【題目】如果若干個(gè)函數(shù)的圖象經(jīng)過(guò)平移后能夠重合,則稱這些函數(shù)“互為生成”函數(shù),給出下列函數(shù):
①f(x)=sinx﹣cosx,
②f(x)= (sinx+cosx),
③f(x)= sinx+2,
④f(x)=sinx,其中互為生成的函數(shù)是(
A.①②
B.①③
C.③④
D.②④

【答案】B
【解析】解:根據(jù)題意,兩個(gè)y=Asin(ωx+)+b 型函數(shù)互為生成的函數(shù)的條件是,這兩個(gè)函數(shù)的解析式中的A和ω相同,
∵①f(x)=sinx﹣cosx= sin(x﹣ ),②f(x)= (sinx+cosx)=2sin(x+ ),
③f(x)= sinx+2,④f(x)=sinx.
故①③兩個(gè)函數(shù)解析式中的A和ω相同,故這兩個(gè)函數(shù)的圖象通過(guò)平移能夠完全重合.
故①③互為生成的函數(shù),
故選B.
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.

(Ⅰ)在圖2中,求證: ;

(Ⅱ)若點(diǎn)是線段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)什么位置時(shí),二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中.直線的參數(shù)方程為為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn).以軸非負(fù)半軸為極軸)中.圓的極坐標(biāo)方程是.

(1)寫出直線的直角坐標(biāo)方程,并把圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)設(shè)圓上的點(diǎn)到直線的距離最小,點(diǎn)到直線的距離最大,求點(diǎn)的橫坐標(biāo)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解小學(xué)生近視情況,決定隨機(jī)從同一個(gè)學(xué)校二年級(jí)到四年級(jí)的學(xué)生中抽取60名學(xué)生檢測(cè)視力,其中二年級(jí)共有學(xué)生2400人,三年級(jí)共有學(xué)生2000人,四年級(jí)共有學(xué)生1600人,則應(yīng)從三年級(jí)學(xué)生中抽取的學(xué)生人數(shù)為( 。
A.24
B.20
C.16
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為

1,過(guò)點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值;

2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問(wèn):是否存在實(shí)數(shù),使得的長(zhǎng)為定值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的i的值為8,則判斷框內(nèi)實(shí)數(shù)a的取值范圍是 . (寫成區(qū)間或集合的形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是各項(xiàng)為正的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{an+bn} 的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)為A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過(guò)點(diǎn)B且橫、縱截距互為相反數(shù),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,角的平分線于點(diǎn),設(shè).(1)求;(2)若,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案