已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若恒成立,證明:當(dāng)時(shí),.
(Ⅰ)當(dāng)時(shí),上遞增;當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;(Ⅱ)證明過程詳見解析.

試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間、最值等數(shù)學(xué)知識(shí)和方法,突出考查分類討論思想和綜合分析問題和解決問題的能力.第一問是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,但是題中有參數(shù),需對(duì)參數(shù)進(jìn)行討論,可以轉(zhuǎn)化為含參一元一次不等式的解法;第二問先是恒成立問題,通過第一問的單調(diào)性對(duì)進(jìn)行討論,通過求函數(shù)的最大值求出符合題意的,表達(dá)式確定后,再利用函數(shù)的單調(diào)性的定義,作差,放縮法證明不等式.
試題解析:(Ⅰ)
,上遞增;
,當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減.                  5分
(Ⅱ)由(Ⅰ)知,若,上遞增,
,故不恒成立.
,當(dāng)時(shí),遞減,,不合題意.
,當(dāng)時(shí),遞增,,不合題意.
,上遞增,在上遞減,
符合題意,
,且(當(dāng)且僅當(dāng)時(shí)取“”).              8分
當(dāng)時(shí),
,
所以.                     12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點(diǎn)處的切線為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),則當(dāng)兩個(gè)函數(shù)圖象有且只有一個(gè)公共點(diǎn)時(shí),__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)為自然對(duì)數(shù)的底數(shù))的值域是實(shí)數(shù)集R,則實(shí)數(shù)a的取值范圍是(   )
A.B.C.D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)為(其中為自然對(duì)數(shù)的底數(shù),為實(shí)數(shù)),且上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

武漢煉油廠某分廠將原油精練為汽油,需對(duì)原油進(jìn)行冷卻和加熱,如果第x小時(shí)時(shí),原油溫度(單位:℃)為,那么,原油溫度的瞬時(shí)變化率的最小值是( 。
A.8B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的極值點(diǎn)為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞增區(qū)是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)在x=1處取極值,則m=                        

查看答案和解析>>

同步練習(xí)冊(cè)答案