已知極坐標(biāo)系中,曲線方程為,則曲線左準(zhǔn)線的極坐標(biāo)方程為

[    ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線段AE的長(zhǎng).
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個(gè)特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線C上點(diǎn)M到直線l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請(qǐng)給出證明;如果不成立,請(qǐng)舉出一個(gè)使它不成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過點(diǎn)M且不過圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
 
1
1
],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)請(qǐng)考生在下列兩題中任選一題作答,如果多做,則按所做的第一題記分.
(1)極坐標(biāo)系中,曲線ρ=10cosθ和直線3ρcosθ-4ρsinθ-30=0交于A、B兩點(diǎn),則線段AB的長(zhǎng)=
8
8

(2)已知函數(shù)f(x)=|x-2|-|x-5|,則f(x)的取值范圍是
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•三明模擬)(1)選修4-2:矩陣與變換
設(shè)矩陣M=
1a
b1

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(α為參數(shù)),點(diǎn)Q極坐標(biāo)為(2,
4
)

(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點(diǎn)P是圓C上的任意一點(diǎn),求P、Q兩點(diǎn)距離的最小值.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

同步練習(xí)冊(cè)答案