【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本y(元)與生產(chǎn)該產(chǎn)品的數(shù)量x(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根據(jù)以上數(shù)據(jù),繪制了散點圖.
參考數(shù)據(jù):(其中)
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.8 |
參考公式:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為:.
(1)觀察散點圖判斷,與哪一個適宜作為非原料成本y與生產(chǎn)該產(chǎn)品的數(shù)量x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y與x的回歸方程.
(3)試預(yù)測生產(chǎn)該產(chǎn)品10000件時每件產(chǎn)品的非原料成本.
【答案】(1);(2);(3)21元
【解析】
(1)根據(jù)給定的散點圖,結(jié)果函數(shù)的圖象與性質(zhì),即可作差選擇;
(2)令,則,可轉(zhuǎn)化為,利用回歸系數(shù)的公式求得的值,進而得到回歸方程;
(3)把,代入回歸方程,求得的值,即可得出結(jié)論.
(1)由題意,根據(jù)題設(shè)中的散點圖,可得這些點能比較均有的分布在的兩側(cè),所以選擇函數(shù)作為非原料成本y與生產(chǎn)該產(chǎn)品的數(shù)量x的回歸方程類型.
(2)令,則,可轉(zhuǎn)化為
因為,所以
則,
所以,即.
(3)當(dāng)(千件)時,,
所以預(yù)測生產(chǎn)該產(chǎn)品10000件時每件產(chǎn)品的非原料成本為21元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學(xué)和語文,英語學(xué)科改為參加等級考試,每年考兩次,分別放在每個學(xué)年的上、下學(xué)期,物理、化學(xué)、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?zhǔn).考生從中選擇三科成績,參加大學(xué)相關(guān)院系的錄取.
(1)若英語等級考試成績有一次為優(yōu),即可達(dá)到某211院校的錄取要求.假設(shè)某個學(xué)生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學(xué)期的英語等級考試成績才為優(yōu)的概率;
(2)據(jù)預(yù)測,要想報考該211院校的相關(guān)院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設(shè)該生在省會考六科的成績,考到90分以上概率都是,設(shè)該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了名學(xué)生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學(xué)生中隨機抽取一名學(xué)生,該學(xué)生的比賽成績不低于分”,估計的概率;
(3)在抽取的名學(xué)生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足.
(1)求的通項公式;
(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中正確的命題有( )
A.設(shè)具有相關(guān)關(guān)系的兩個變量x,y的相關(guān)系數(shù)為r,則越接近于0,x,y之間的線性相關(guān)程度越高
B.隨機變量,若,則
C.公共汽車上有10位乘客,沿途5個車站,乘客下車的可能方式有種
D.回歸方程為中,變量y與x具有正的線性相關(guān)關(guān)系,變量x增加1個單位時,y平均增加0.85個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出與的函數(shù)關(guān)系式;
(2)按這100天統(tǒng)計的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2,a3-2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com