【題目】已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最大值;
(Ⅲ)設(shè)直線, 分別與軸交于點, .判斷, 大小關(guān)系,并加以證明.
【答案】(1)(2)(3)見解析
【解析】試題分析:
(1)由題意求得 ,所以橢圓的方程為.
(2) 聯(lián)立直線與橢圓的方程,由題意可得.三角形的高為.,面積表達(dá)式,當(dāng)且僅當(dāng)時, .即的面積的最大值是.
(3)結(jié)論為.利用題意有.所以.
試題解析:
解:(Ⅰ)設(shè)橢圓的半焦距為.
因為橢圓的離心率是,
所以 , 即 .
由 解得
所以橢圓的方程為.
(Ⅱ)將代入,
消去整理得.
令,解得.
設(shè).
則, .
所以
.
點到直線的距離為.
所以的面積
,
當(dāng)且僅當(dāng)時, .
所以的面積的最大值是.
(Ⅲ).證明如下:
設(shè)直線, 的斜率分別是, ,
則.
由(Ⅱ)得
,
所以直線, 的傾斜角互補.
所以,
所以.
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感市及周邊地區(qū)的市民游玩又添新去處啦!孝感熙鳳水鄉(xiāng)旅游度假區(qū)于2017年10月1日正式對外開放.據(jù)統(tǒng)計,從2017年10月1日到10月7日參觀孝感市熙鳳水鄉(xiāng)旅游度假區(qū)的人數(shù)如表所示:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(shù)(萬) | 11 | 13 | 8 | 9 | 7 | 8 | 10 |
(1)把這7天的參觀人數(shù)看成一個總體,求該總體的眾數(shù)和平均數(shù)(精確到0.1);
(2)用簡單隨機抽樣方法從10月1日到10月4日中抽取2天,它們的參觀人數(shù)組成一個樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過1萬的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓的焦距為 ,直線被橢圓 截得的弦長為 .
(1)求橢圓 的方程;
(2)設(shè)點是橢圓 上的動點,過原點引兩條射線與圓分別相切,且的斜率存在. ①試問 是否為定值?若是,求出該定值,若不是,說明理由;
②若射線與橢圓 分別交于點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為,過任作一條與兩條坐標(biāo)軸都不垂直的直線,與橢圓交于兩點,且的周長為8,當(dāng)直線的斜率為時, 與軸垂直.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在定點,總能使平分?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感星河天街購物廣場某營銷部門隨機抽查了100名市民在2017年國慶長假期間購物廣場的消費金額,所得數(shù)據(jù)如表,已知消費金額不超過3千元與超過3千元的人數(shù)比恰為3:2.
(1)試確定, , , 的值,并補全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費金額在、和的三個群體中抽取7人進(jìn)行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這7人中隨機選取2人,則此2人來自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點, 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于兩點,點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ .
(1)判斷f(x)的奇偶性并說明理由;
(2)當(dāng)a=16時,判斷f(x)在x∈(0,2]上的單調(diào)性并用定義證明;
(3)試判斷方程x3﹣2016x+16=0在區(qū)間(0,+∞)上解的個數(shù)并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設(shè)休閑區(qū)的長A1B1=x米,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com