【題目】已知函數(shù)-2為自然對(duì)數(shù)的底數(shù),).
(1)若曲線在點(diǎn)處的切線與曲線至多有一個(gè)公共點(diǎn)時(shí),求的取值范圍;
(2)當(dāng)時(shí),若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(1);(2) .
【解析】
(1)求導(dǎo)函數(shù),確定曲線在點(diǎn)處的切線,與聯(lián)立,利用根的判別式,即可得出結(jié)論;
(2)由得,構(gòu)造新函數(shù),求導(dǎo)函數(shù),確定其單調(diào)性,可得最值,即可確定的取值范圍.
(1) ,所以切線斜率
又 ,∴曲線在點(diǎn)(1,0)處的切線方程為
由.
由 可知:
當(dāng)Δ=0時(shí),即 或時(shí),有一個(gè)公共點(diǎn);
當(dāng)Δ<0時(shí),即 時(shí),沒有公共點(diǎn).
所以所求的取值范圍為.
(2),由,得,
令 ,則.
當(dāng)x∈時(shí),由,得.
所以 在上單調(diào)遞減,在[1,e]上單調(diào)遞增,
因此,由,
比較可知,所以,結(jié)合函數(shù)圖象可得,當(dāng) 時(shí),
函數(shù) 有兩個(gè)零點(diǎn).
故所求 的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以為首項(xiàng)的數(shù)列滿足:
(1)當(dāng),時(shí),求數(shù)列的通項(xiàng)公式;
(2)當(dāng),時(shí),試用表示數(shù)列前100項(xiàng)的和;
(3)當(dāng)(是正整數(shù)),,正整數(shù)時(shí),判斷數(shù)列,,,是否成等比數(shù)列?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)的導(dǎo)函數(shù)在上有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求曲線在點(diǎn)處切線的方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購(gòu)買x臺(tái)機(jī)器人的總成本p(x)=萬(wàn)元.
(1)若使每臺(tái)機(jī)器人的平均成本最低,問(wèn)應(yīng)買多少臺(tái)?
(2)現(xiàn)按(1)中的數(shù)量購(gòu)買機(jī)器人,需要安排m人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀,經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量q(m)= (單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問(wèn)引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少百分之幾?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過(guò)點(diǎn)P。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過(guò)橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 f(x)=(x﹣1)ex﹣ax2..
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若在處取得極大值,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com