已知數(shù)列{an}的通項公式是an=n2sin(
2n+1
2
π),則a1+a2+a3+…+a2014=( 。
A、
2013×2014
2
B、
2014×2015
2
C、
2013×2013
2
D、
2014×2014
2
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出a1+a2+a3+…+a2014=(22-12)+(42-32)+(62-52)+…+(20142-20132),由此能求出結(jié)果.
解答: 解:∵an=n2sin(
2n+1
2
π)=
-n2,n是奇數(shù)
n2,n是偶數(shù)
,
∴a1+a2+a3+…+a2014
=(22-12)+(42-32)+(62-52)+…+(20142-20132
=1+2+3+4+5+6+…+2013+2014
=
2014×2015
2

故選:B.
點評:本題考查數(shù)列的前2014項和的求法,是中檔題,解題時要認(rèn)真審題,注意an=n2sin(
2n+1
2
π)=
-n2,n是奇數(shù)
n2,n是偶數(shù)
的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD,AB=2,AD=1.若點E,F(xiàn),G,H分別在線段AB,BC,CD,DA上,且AE=BF=CG=DH,則四邊形EFGH面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象為開口向下的拋物線,且對任意x∈R都有f(1+x)=f(1-x).若向量
a
=(m,-1),
b
=(m,-2),則滿足不等式f(
a
b
)>f(-1)的m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點O是△ABC的外接圓圓心,且AB=3,AC=4.若存在非零實數(shù)x、y,使得
AO
=x
AB
+y
AC
,且x+2y=1,則cos∠BAC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從甲乙兩個城市分別隨機抽取15臺自動售貨機,對其銷售額進行統(tǒng)計,統(tǒng)計數(shù)據(jù)用莖葉圖表示(如圖所示),設(shè)甲乙兩組數(shù)據(jù)的平均數(shù)分別為
.
x1
,
.
x2
,中位數(shù)分別為m1,m2,則( 。
A、
.
x1
.
x2
,m1<m2
B、
.
x1
.
x2
,m1>m2
C、
.
x1
.
x2
,m1>m2
D、
.
x1
.
x2
,m1<m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中不正確的是( 。
A、對于線性回歸方程
y
=
b
x+
a
,直線必經(jīng)過點(
.
x
,
.
y
B、莖葉圖的優(yōu)點在于它可以保存原始數(shù)據(jù),并且可以隨時記錄
C、將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變
D、擲一枚均勻硬幣出現(xiàn)正面向上的概率是
1
2
,那么一枚硬幣投擲2次一定出現(xiàn)正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點與拋物線y2=12x的焦點重合,且雙曲線的一條漸近線被圓(x-3)2+y2=8截得的弦長為4,則此雙曲線的漸近線方程為( 。
A、y=±2x
B、y=±
2
5
5
x
C、y=±
66
3
x
D、y=±2
6
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一批產(chǎn)品分為一、二、三級,其中一級品是二級品的2倍,三級品為二級品的一半,從這批產(chǎn)品中隨機抽取一個檢驗,其級別為隨機變量ξ,則Eξ的值為( 。
A、
11
7
B、
12
7
C、
13
7
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個正四面體紙盒的俯視圖如圖所示,其中四邊形ABCD是邊長為3
2
的正方形,若在該正四面體紙盒內(nèi)放一個正方體,使正方體可以在紙盒內(nèi)任意轉(zhuǎn)動,則正方體棱長的最大值為(  )
A、
2
B、1
C、2
D、
3

查看答案和解析>>

同步練習(xí)冊答案