【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;
(2)該種植基地在如圖所示的長方形地塊的每個格點(diǎn)(橫縱直線的交點(diǎn))處都種了一株該種水果,其中每個小正方形的面積都為,現(xiàn)從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測它的產(chǎn)量的平均數(shù).
附:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的面積為,且與軸、軸分別交于兩點(diǎn).
(1)求圓的方程;
(2)若直線與線段相交,求實(shí)數(shù)的取值范圍;
(3)試討論直線與(1)小題所求圓的交點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為2,M,N分別為A1B,AC的中點(diǎn).
(1)證明:MN//B1C;
(2)求A1B與平面A1B1CD所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿直線翻折成,連結(jié),為的中點(diǎn),則在翻折過程中,下列說法中所有正確的序號是_______.
①存在某個位置,使得;
②翻折過程中,的長是定值;
③若,則;
④若,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;
(2)有一種植戶準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計劃收獲后能全部售出,價格為10元,如果收入(收入=產(chǎn)量×價格)不低于25000元,則的最大值是多少?
(3)該種植基地在如圖所示的直角梯形地塊的每個交叉點(diǎn)(直線的交點(diǎn))處都種了一株該種水果,其中每個小正方形的邊長和直角三角形的直角邊長都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測它的產(chǎn)量的分布列與數(shù)學(xué)期望.
附:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓過點(diǎn),且與直線相切于點(diǎn),求圓的方程;
(2)已知圓與軸相切,圓心在直線上,且圓被直線截得的弦長為,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:與圓:相切,并且橢圓上動點(diǎn)與圓上動點(diǎn)間距離最大值為.
(1)求橢圓的方程;
(2)過點(diǎn)作兩條互相垂直的直線,,與交于兩點(diǎn),與圓的另一交點(diǎn)為,求面積的最大值,并求取得最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切,圓心在軸上,且直線被圓截得的弦長為.
(1)求圓的方程;
(2)過點(diǎn)作斜率為的直線與圓交于兩點(diǎn),若直線與的斜率乘積為,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com