11.函數(shù)y=$\frac{lg(5-x)}{x-2}$的定義域為{x|x<5且x≠2}.

分析 由對數(shù)式的真數(shù)大于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{5-x>0}\\{x-2≠0}\end{array}\right.$,解得x<5且x≠2.
∴函數(shù)y=$\frac{lg(5-x)}{x-2}$的定義域為{x|x<5且x≠2}.
故答案為:{x|x<5且x≠2}.

點評 本題考查函數(shù)的定義域及其求法,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-3≥0}\\{2x-y-3≤0}\\{x-y+1≥0}\end{array}\right.$求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在三棱臺ABC-A1B1C1中,平面α過點A1,B1,且CC1∥平面α,平面α與三棱臺的面相交,交線圍成一個四邊形.
(Ⅰ)在圖中畫出這個四邊形,并指出是何種四邊形(不必說明畫法、不必說明四邊形的形狀);
(Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1,平面BB1C1C⊥平面ABC,二面角B1-AB-C等于60°,求直線AB1與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設F1,F(xiàn)2分別為橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的左右焦點,P為橢圓上一點,若△F1F2P為直角三角形,該三角形的面積為$\frac{48}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為( 。
A.B.C.11πD.13π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)y=${(\frac{1}{2})^{|x|}}$+m有零點,則實數(shù)m的取值范圍是[-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知拋物線C:y2=4x,傾斜角為α的直線l過點F(1,0),且與拋物線C交于A,B兩點,A,B在直線x=-1上的射影分別為A1,B1,記m=$\overrightarrow{F{A}_{1}}$$•\overrightarrow{F{B}_{1}}$,則( 。
A.m>0B.m<0C.m=0D.m值與α有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知偶函數(shù)f(x)在(-∞,0)上單調遞增,若f(-1)=0,則不等式xf(x)>0的解集是(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知復數(shù)z滿足|z|=1,則|z-(4+3i)|的最大、最小值為( 。
A.5,3B.6,4C.7,5D.6,5

查看答案和解析>>

同步練習冊答案