【題目】已知復(fù)數(shù)是實(shí)數(shù),是虛數(shù)單位.

(1)求復(fù)數(shù);

(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

【答案】(1)z=﹣2i.(2)m∈(﹣∞,﹣2)時(shí),復(fù)數(shù)所表示的點(diǎn)在第一象限.

【解析】試題分析】(1)將代入,再借助是實(shí)數(shù),其虛部為0建立方程求出的值;(2)將代入,借助其表示的點(diǎn)在第一象限建立不等式組,通過(guò)解不等式組求出的取值范圍:

解:(1)∵z=bi(b∈R),===

又∵是實(shí)數(shù),∴, ∴b=﹣2,即z=﹣2i.

(2)∵z=﹣2i,m∈R,∴(m+z)2=(m﹣2i)2=m2﹣4mi+4i2=(m2﹣4)﹣4mi,

又∵復(fù)數(shù)所表示的點(diǎn)在第一象限,∴,

解得m<﹣2,即m∈(﹣∞,﹣2)時(shí),復(fù)數(shù)所表示的點(diǎn)在第一象限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,國(guó)內(nèi)很多評(píng)價(jià)機(jī)構(gòu)經(jīng)過(guò)反復(fù)調(diào)研論證,研制出“增值評(píng)價(jià)”方式。下面實(shí)例是某市對(duì)“增值評(píng)價(jià)”的簡(jiǎn)單應(yīng)用,該市教育評(píng)價(jià)部門對(duì)本市所高中按照分層抽樣的方式抽出(其中,“重點(diǎn)高中”所分別記為,“普通高中”所分別記為),進(jìn)行跟蹤統(tǒng)計(jì)分析,將所高中新生進(jìn)行了統(tǒng)的入學(xué)測(cè)試高考后,該市教育評(píng)價(jià)部門將人學(xué)測(cè)試成績(jī)與高考成績(jī)的各校平均總分繪制成了雷達(dá)圖.點(diǎn)表示學(xué)校入學(xué)測(cè)試平均總分大約分,點(diǎn)表示學(xué)校高考平均總分大約分,則下列敘述不正確的是(

A.各校人學(xué)統(tǒng)一測(cè)試的成績(jī)都在分以上

B.高考平均總分超過(guò)分的學(xué)校有

C.學(xué)校成績(jī)出現(xiàn)負(fù)增幅現(xiàn)象

D.“普通高中”學(xué)生成績(jī)上升比較明顯

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(a,bR)

1)當(dāng)ab1時(shí),求的單調(diào)增區(qū)間;

2)當(dāng)a≠0時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;

3)當(dāng)a0時(shí),若的解集為(mn),且(m,n)中有且僅有一個(gè)整數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)F(1,0),O為坐標(biāo)原點(diǎn),A,B是拋物線C上異于 O的兩點(diǎn).

(1)求拋物線C的方程;

(2)若直線AB過(guò)點(diǎn)(8,0),求證:直線OA,OB的斜率之積為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知球的半徑為3,該球的內(nèi)接正三棱錐的體積最大值為,內(nèi)接正四棱錐的體積最大值為,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對(duì)數(shù)的底數(shù),e≈2.718…).

(1)求函數(shù)f(x)的極值;

(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2的正方形沿對(duì)角線折疊,使得平面平面,又平面.

(1)若,求直線與直線所成的角;

(2)若二面角的大小為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且其離心率為,過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于,兩點(diǎn).

1)求橢圓的方程;

2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案