【題目】已知球的半徑為3,該球的內(nèi)接正三棱錐的體積最大值為,內(nèi)接正四棱錐的體積最大值為,則的值為__________.
【答案】
【解析】
設(shè)球心O到正三棱錐 底面MNQ的距離為x,則VP﹣MNQ,設(shè)正四棱錐S﹣ABCD的底面邊長(zhǎng)等于a,底面到球心的距離等于x,則V(x)a2h(18﹣2x2)(3+x),利用均值不等式分別求最值即可.
設(shè)球心O到正三棱錐 底面MNQ的距離為x,則0≤x<3,
設(shè)底面中心為O′,則O′M,
∴底面邊長(zhǎng)MNO′M,棱錐的高SO′=x+3,
∴VP﹣MNQ(3+x)(6﹣2x)(x+3)()3=8.即8
當(dāng)且僅當(dāng)x+3=6﹣2x即x=1時(shí)取得等號(hào).
設(shè)正四棱錐S﹣ABCD的底面邊長(zhǎng)等于a,底面到球心的距離等于x,
則:x2+(a)2=9,
而正四棱錐的高為h=3+x,
故正四棱錐體積為:
V(x)a2h(18﹣2x2)(3+x)(6﹣2x)(3+x)(3+x)
()3,即
當(dāng)且僅當(dāng)x=2時(shí),等號(hào)成立,
∴
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是__________(填序號(hào))
(1)已知相關(guān)變量滿足回歸方程,若變量增加一個(gè)單位,則平均增加個(gè)單位
(2)若為兩個(gè)命題,則“”為假命題是“”為假命題的充分不必要條件
(3)若命題,,則,
(4)已知隨機(jī)變量,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)參加詩詞大賽,各答3道題,每人答對(duì)每道題的概率均為,且各人是否答對(duì)每道題互不影響.
(Ⅰ)用表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)為事件“甲比乙答對(duì)題目數(shù)恰好多2”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:
直徑 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(1)由以往統(tǒng)計(jì)數(shù)據(jù)知,設(shè)備的性能根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率);①;②;③,評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁.為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,試判斷設(shè)備的性能等級(jí)
(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.
(i)若從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,求恰有一件次品的概率;
(ii)若從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),左焦點(diǎn)為.
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點(diǎn),線段的中點(diǎn)為,點(diǎn)在橢圓上,滿足(為坐標(biāo)原點(diǎn)).判斷的面積是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項(xiàng)中最大值為,最小值為,令,數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為.
(1)若數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,求;
(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請(qǐng)證明;若不是,請(qǐng)舉例說明;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最值;
(2)設(shè),若當(dāng),且時(shí),,求整數(shù)的最小值..
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com