【題目】已知球的半徑為3,該球的內(nèi)接正三棱錐的體積最大值為,內(nèi)接正四棱錐的體積最大值為,則的值為__________

【答案】

【解析】

設(shè)球心O到正三棱錐 底面MNQ的距離為x,則VPMNQ,設(shè)正四棱錐SABCD的底面邊長(zhǎng)等于a,底面到球心的距離等于x,則Vxa2h182x2)(3+x),利用均值不等式分別求最值即可.

設(shè)球心O到正三棱錐 底面MNQ的距離為x,則0x3,

設(shè)底面中心為O′,則OM,

∴底面邊長(zhǎng)MNOM,棱錐的高SO′=x+3,

VPMNQ3+x)(62x)(x+338.即8

當(dāng)且僅當(dāng)x+362xx1時(shí)取得等號(hào).

設(shè)正四棱錐SABCD的底面邊長(zhǎng)等于a,底面到球心的距離等于x,

則:x2+a29,

而正四棱錐的高為h3+x,

故正四棱錐體積為:

Vxa2h182x2)(3+x62x)(3+x)(3+x

3,即

當(dāng)且僅當(dāng)x2時(shí),等號(hào)成立,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是__________(填序號(hào))

1)已知相關(guān)變量滿足回歸方程,若變量增加一個(gè)單位,則平均增加個(gè)單位

2)若為兩個(gè)命題,則為假命題是為假命題的充分不必要條件

3)若命題,,則,

4)已知隨機(jī)變量,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加詩詞大賽,各答3道題,每人答對(duì)每道題的概率均為,且各人是否答對(duì)每道題互不影響.

)用表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

)設(shè)為事件“甲比乙答對(duì)題目數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

1)由以往統(tǒng)計(jì)數(shù)據(jù)知,設(shè)備的性能根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率);①;②;③,評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁.為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,試判斷設(shè)備的性能等級(jí)

2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.

i)若從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,求恰有一件次品的概率;

ii)若從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),左焦點(diǎn)為.

(1)求橢圓的方程;

(2)直線與橢圓相交于,兩點(diǎn),線段的中點(diǎn)為,點(diǎn)在橢圓上,滿足為坐標(biāo)原點(diǎn)).判斷的面積是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.

(1)求復(fù)數(shù);

(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記無窮數(shù)列的前n項(xiàng)中最大值為,最小值為,令,數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為

(1)若數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,求;

(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請(qǐng)證明;若不是,請(qǐng)舉例說明;

(3)若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,平面,.

1)證明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)設(shè),若當(dāng),且時(shí),,求整數(shù)的最小值..

查看答案和解析>>

同步練習(xí)冊(cè)答案