【題目】已知圓錐曲線 為參數(shù))和定點 , F1 、 F2 是此圓錐曲線的左、右焦點,以原點 O 為極點,以 x 軸的正半軸為極軸建立極坐標系.
(1)求直線 AF2 的直角坐標方程;
(2)經過點 F1 且與直線AF2 垂直的直線 l 交此圓錐曲線于M,N 兩點,求||MF1|-|NF1|| 的值.

【答案】
(1)

.


(2)


【解析】1.曲線 可化為 ,
其軌跡為橢圓,焦點為 F1(-1,0),F2(1,0) .
經過 和F2(1,0) 的直線方程為 ,即 .
2.由(1)知,直線 AF2 的斜率為 ,因為 ,所以l的斜率為 ,傾斜角為 ,
所以l的參數(shù)方程為 (t為參數(shù)),
代入橢圓C的方程中,得
因為M,N在點 F1 的兩側,所以 .
【考點精析】本題主要考查了橢圓的參數(shù)方程的相關知識點,需要掌握橢圓的參數(shù)方程可表示為才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當水面在l時,拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x|x2-12|的定義域為[0,m],值域為[0,am2],則實數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系xOy中,圓錐曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經過定點P(2,3),傾斜角為
(1)寫出直線l的參數(shù)方程和圓的標準方程;
(2)設直線l與圓相交于A,B兩點,求|PA|·|PB|的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系 xOy 中,圓錐曲線 C 的參數(shù)方程為 為參數(shù)),定點 , F1,F2 是圓錐曲線 C 的左,右焦點.
(1)以原點為極點、 x 軸正半軸為極軸建立極坐標系,求經過點 F1 且平行于直線AF2 的直線 l 的極坐標方程;
(2)在(1)的條件下,設直線 l 與圓錐曲線 C 交于 E,F 兩點,求弦 EF 的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某烹飪學院為了弘揚中國傳統(tǒng)的飲食文化,舉辦了一場由在校學生參加的廚藝大賽,組委會為了了解本次大賽參賽學生的成績情況,從參賽學生中抽取了n名學生的成績(滿分100分)作為樣本,將所得數(shù)經過分析整理后畫出了評論分布直方圖和莖葉圖,其中莖葉圖受到污染,請據(jù)此解答下列問題:

(1)求頻率分布直方圖中a,b的值;

(2)規(guī)定大賽成績在[80,90)的學生為廚霸,在[90,100]的學生為廚神,現(xiàn)從被稱為廚霸、廚神的學生中隨機抽取2人取參加校際之間舉辦的廚藝大賽,求所取2人總至少有1人是廚神的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的極坐標方程為 ,直線l的參數(shù)方程為 (t為常數(shù),t∈R)
(1)求直線l的普通方程和圓C的直角坐標方程;
(2)求直線l與圓C相交的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為 、為橢圓的左右頂點,焦點到短軸端點的距離為2, 、為橢圓上異于的兩點,且直線的斜率等于直線斜率的2倍.

(Ⅰ)求證:直線與直線的斜率乘積為定值;

(Ⅱ)求三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)=loga
(1)求f(x)的定義域D及其零點;
(2)設g(x)=mx2﹣2mx+3,當a>1時,若對任意x1∈(﹣∞,﹣1],存在x2∈[3,4],使得f(x1)≤g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案