設(shè)全集R為實(shí)數(shù)集合,集合A={x|1≤x≤4},B={x|m+1≤x≤2m-1},當(dāng)m=3時(shí),求∁R(A∪B)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:首先把m=3代入集合B,進(jìn)而確定集合B,然后由并集和補(bǔ)集的定義求出結(jié)果.
解答: 解:當(dāng)m=3時(shí),m+1=4,2m-1=5
∴B={x|4≤x≤5}
∵集合A={x|1≤x≤4},
∴A∪B={x|1≤x≤5}
故∁R(A∪B)={x|x<1或x>5}
點(diǎn)評(píng):本題主要考查了并集和補(bǔ)集的定義,熟記定義是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=sin(2x-
π
3
)的圖象可以由y=sin2x的圖象向右平移
π
6
個(gè)單位長度得到;
②函數(shù)y=3•2x的圖象可以由函數(shù)y=2x的圖象向左或向右平移得到;
③設(shè)函數(shù)f(x)=lg|x|-sinx的零點(diǎn)個(gè)數(shù)為n,則n=6;
④已知函數(shù)f(x)=m(x-2m)(x+m+3),g(x)=ex-e(e是自然對數(shù)的底數(shù)),如果對于任意x∈R總有f(x)<0或g(x)>0且存在x∈(-∞,-6),使得f(x)g(x)<0,則實(shí)數(shù)m的取值范圍是(-4,-3).
則其中所有正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)集X={-1,x1,x2,…,xn},其中0<x1<x2<…<xn,n≥2,定義向量的集合Y={
a
|
a
=(s,t),s∈X,t∈X},若對任意
a
1∈Y,存在
a
2∈Y,使得
a
l
a
2=0,則稱X具有性質(zhì)P.例如{-1,1,2}具有性質(zhì)P.若X具有性質(zhì)P,且x1=1,x2=q(q為常數(shù)),則有窮數(shù)列x1,x2,…,xn的通項(xiàng)公式為( 。
A、xi=qi-1,i=1,2,…,n
B、xi=1+(i-1)(q-1)i-1,i=1,2,…,n
C、xi=1+(i-1)q,i=1,2,…,n
D、xi=
q-2
2
i2+
4-q
2
i
,i=1,2,…n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列關(guān)系,其中正確的個(gè)數(shù)為( 。
①0∉∅;
②{tan30,cos30,sin30}={
1
2
,
3
2
,
3
3
};
③∅⊆{0};
④{-
1
2
1
2
}?{x|x≤
2
3
}.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2+3k2≥2k(2x-1)},B={x|x2-(2x-1)k+k2≥0},且A⊆B,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C對應(yīng)的邊是a,b,c,滿足2asinA=(2b+c)sinB+(2c+b)sinC
(1)求角A;    
(2)若b=2,c=1,D為BC上一點(diǎn),且CD=2BD,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A、B、C成等差數(shù)列,sinC=
5
13
,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-1,a∈R,x∈R,設(shè)集合A={x|f(x)=x},集合B={x|f(f(x))=x},且A=B≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-2x-3
的單調(diào)減區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊答案