(3x+
1
x
8(n∈N+)的展開(kāi)式中含有常數(shù)項(xiàng)為第( 。╉(xiàng).
A、4B、5C、6D、7
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:計(jì)算題,二項(xiàng)式定理
分析:先求出二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于0,即可求得結(jié)論.
解答: 解:由于(3x+
1
x
8(n∈N+)的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
8
•(3x)8-r(
1
x
)r
=3n-r
C
r
8
•x8-2r,
令8-2r=0,則r=4,
∴(3x+
1
x
8(n∈N+)的展開(kāi)式中含有常數(shù)項(xiàng)為第5項(xiàng).
故選:B.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x5=a0+a1(x+1)+a2(x+1)2+…+a5(x+1)5,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O-xyz中,平面OAB的法向量為
a
=(2,-2,1),已知P(-1,3,2),則P到平面OAB的距離等于( 。
A、4B、2C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線2x+3y-3=0和4x+my+2=0互相平行,則兩直線之間的距離是(  )
A、
7
13
26
B、
5
13
26
C、
4
13
13
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2+2x,x≤0
-1+lnx,x>0
的零點(diǎn)個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|
2
x
>1},N={y|y=x2+1},則M∩N=(  )
A、[1,2)B、(1,2)
C、(2,+∞)D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)投擲硬幣的游戲中,把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”為事件A,“第二次出現(xiàn)正面”為事件B,則P(B|A)等于( 。
A、
1
2
B、
1
4
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線ax-y+3=0與圓(x-1)2+(y-2)2=4相交于A、B兩點(diǎn),且弦AB的長(zhǎng)為2
3
,則a=( 。
A、-1
B、0
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)圖象上的任意一點(diǎn)P的坐標(biāo)(x,y)滿足條件x2>y2,則稱函數(shù)f(x)具有性質(zhì)S,那么下列函數(shù)中具有性質(zhì)S的是( 。
A、f(x)=ex-1
B、f(x)=ln(x+1)
C、f(x)=sinx
D、f(x)=tanx

查看答案和解析>>

同步練習(xí)冊(cè)答案