【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐組合而成, ,

(Ⅰ)證明:平面平面;

(Ⅱ)求正四棱錐的高,使得二面角的余弦值是

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)

【解析】試題分析:(Ⅰ)要證面面垂直只需證線(xiàn)面垂直,而要證線(xiàn)面垂直,又往往需要利用線(xiàn)面垂直的性質(zhì)定理;(Ⅱ)利用(Ⅰ)建系后求法向量,要注意兩個(gè)法向量夾角和二面角平面角關(guān)系,不要弄錯(cuò)符號(hào).

試題解析:(Ⅰ)證明:正三棱柱中, 平面

所以,又,

所以平面, 平面,

所以平面平面. 

(Ⅱ)由(Ⅰ)知平面,以為原點(diǎn), , 方向?yàn)?/span>, , 軸建立空間直角坐標(biāo)系,設(shè)正四棱錐的高為 ,則 , , , ,

設(shè)平面的一個(gè)法向量

,則,所以

設(shè)平面的一個(gè)法向量,則

,則, ,所以

二面角的余弦值是

所以,

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線(xiàn)l1x+2y+7=0相切.過(guò)點(diǎn)B(-2,0)的動(dòng)直線(xiàn)l與圓A相交于M,N兩點(diǎn),QMN的中點(diǎn).

(1)求圓A的方程;

(2)當(dāng)|MN|=2時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合其中 . 表示 中所有不同值的個(gè)數(shù).

(Ⅰ)若集合,

(Ⅱ)若集合,求證: 的值兩兩不同,并求;

(Ⅲ)求的最小值.(用含的代數(shù)式表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,飛鏢的標(biāo)靶呈圓盤(pán)形,圓盤(pán)被10等分,按如圖所示染色為Ⅰ、Ⅱ、Ⅲ三部分,某人依次將若干支飛鏢投向標(biāo)靶,如果每次投射都是相互獨(dú)立的.

(1)如果他投向標(biāo)靶的飛鏢恰有2支且都擊中標(biāo)靶,同時(shí)每支飛鏢擊中標(biāo)靶的任意位置都是等可能的,求“第Ⅰ部分被擊中2次或第Ⅱ部分被擊中2次”的概率;

(2)如果他投向標(biāo)靶的飛鏢恰有4支,且他投射1支飛鏢,擊中標(biāo)靶的概率為,設(shè)表示標(biāo)靶被擊中的次數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三年級(jí)有名學(xué)生,隨機(jī)抽查了名學(xué)生,測(cè)試分鐘仰臥起坐的成績(jī)(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計(jì)總體,下列結(jié)論正確的是( )

A. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為

B. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為

C. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)超過(guò)次的人數(shù)約有

D. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了準(zhǔn)確把握市場(chǎng),做好產(chǎn)品計(jì)劃,特對(duì)某產(chǎn)品做了市場(chǎng)調(diào)查:先銷(xiāo)售該產(chǎn)品50天,統(tǒng)計(jì)發(fā)現(xiàn)每天的銷(xiāo)售量分布在內(nèi),且銷(xiāo)售量的分布頻率

.

(Ⅰ)求的值并估計(jì)銷(xiāo)售量的平均數(shù)

(Ⅱ)若銷(xiāo)售量大于等于70,則稱(chēng)該日暢銷(xiāo),其余為滯銷(xiāo).在暢銷(xiāo)日中用分層抽樣的方法隨機(jī)抽取8天,再?gòu)倪@8天中隨機(jī)抽取3天進(jìn)行統(tǒng)計(jì),設(shè)這3天來(lái)自個(gè)組,求隨機(jī)變量的分布列及數(shù)學(xué)期望(將頻率視為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過(guò)Mx軸的垂線(xiàn),垂足為N,點(diǎn)P滿(mǎn)足.

1)求點(diǎn)P的軌跡方程;

2)設(shè)點(diǎn)在直線(xiàn)上,且.證明:過(guò)點(diǎn)P且垂直于OQ的直線(xiàn)過(guò)C的左焦點(diǎn)F.

查看答案和解析>>

同步練習(xí)冊(cè)答案