【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.
【答案】
(1)解:由題意得(sinα+cosα)2= ,
即1+sin2α= ,∴sin2α= .
又2α∈(0, ),∴cos2α= = ,∴tan2α= =
(2)解:∵β∈( , ),β﹣ ∈(0, ),∴cos(β﹣ )= ,
于是sin2(β﹣ )=2sin(β﹣ )cos(β﹣ )= .
又sin2(β﹣ )=﹣cos2β,∴cos2β=﹣ .
又2β∈( ,π),∴sin2β= .
又cos2α= = ,
∴cosα= ,sinα= (α∈(0, )).
∴cos(α+2β)=cosαcos2β﹣sinαsin2β
= ×(﹣ )﹣ × =﹣
【解析】(1)把已知條件兩邊平方,然后利用同角三角函數(shù)間的關(guān)系及二倍角的正弦函數(shù)公式化簡可得sin2α的值,根據(jù)2α的范圍利用同角三角函數(shù)間的關(guān)系求出cos2α即可得到tan2α的值;(2)根據(jù)β的范圍求出 的范圍,由sin( )的值利用同角三角函數(shù)間的關(guān)系求出cos( )的值,然后利用二倍角的正弦函數(shù)公式及同角三角函數(shù)間的關(guān)系分別求出sin2β和cos2β的值,根據(jù)第一問分別求出sinα和cosα的值,把所求的式子利用兩角和的余弦函數(shù)公式化簡后,將每個三角函數(shù)值代入即可求出.
【考點精析】本題主要考查了兩角和與差的余弦公式和二倍角的正弦公式的相關(guān)知識點,需要掌握兩角和與差的余弦公式:;二倍角的正弦公式:才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考山東文數(shù)】某兒童樂園在“六一”兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針所指區(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
①若,則獎勵玩具一個;
②若,則獎勵水杯一個; ③其余情況獎勵飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.
(I)求小亮獲得玩具的概率;
(II)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù), ).
(Ⅰ)把曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;
(Ⅱ)若直線經(jīng)過點,求直線被曲線截得的線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F1,F2分別是橢圓C:的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如表:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張A、B型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應(yīng)生產(chǎn)A、B型桌子各多少張,才能獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有一個△ABC和一點O(如圖),線段OA,OB,OC的中點分別為E,F(xiàn),G,BC,CA,AB的中點分別為L,M,N,設(shè) = , = , = .
(1)試用 , , 表示向量 , , ;
(2)證明:線段EL,F(xiàn)M,GN交于一點且互相平分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com