【題目】已知數(shù)列的前項(xiàng)和為,且,

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說(shuō)明理由。

【答案】(1)見(jiàn)解析(2) n=15

【解析】

(1)當(dāng)n=1時(shí),a1=S1=1﹣5a1﹣85,求出a1﹣1=﹣15,當(dāng)n2時(shí),an=Sn﹣Sn﹣1,從而6an=5an﹣1+1,由此能證明{an﹣1}是首項(xiàng)為﹣15,公比為的等比數(shù)列;

(2)由an﹣1=﹣15(n﹣1,得Sn=n+75(n﹣1﹣90.由此能求出n=15時(shí),Sn取得最小值.

(1)當(dāng)n=1時(shí),a1=-14;當(dāng)n≥2時(shí),an=Sn-Sn-1=-5an+5an-1+1,所以,

a1-1=-15≠0,所以數(shù)列{an-1}是等比數(shù)列;

(2) (1)知:,得,

從而;

解不等式Sn<Sn+1,得,,當(dāng)n≥15時(shí),數(shù)列{Sn}單調(diào)遞增;

同理可得,當(dāng)n≤15時(shí),數(shù)列{Sn}單調(diào)遞減;故當(dāng)n=15時(shí),Sn取得最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

(1)若直線l過(guò)拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對(duì)稱(chēng)的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為(2-p , -p);
②求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知b+c=2acosB.
(1)證明:A=2B;
(2)若cosB= ,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m、n是不同的直線,α、β是不重合的平面,則下列命題正確的是

A. 若α∥β,mα,nβ,則m∥n

B. 若mα,nα,m∥β,n∥β,則α∥β

C. 若aα,bβ,a∥b,則α∥β

D. m、n是兩異面直線,若m∥α,m∥β,且n∥α,n∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M是矩形ABCD的邊CD上的一點(diǎn),AC與BM交于點(diǎn)N,BN=BM.

(1)求證:M是CD的中點(diǎn);

(2)若AB=2,BC=1,H是BM上異于點(diǎn)B的一動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2e2x+m|x|ex+1(m∈R)有四個(gè)零點(diǎn),則m的取值范圍為(
A.(﹣∞,﹣e﹣
B.(﹣∞,e+
C.(﹣e﹣ ,﹣2)
D.(﹣∞,﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 的圖象與g(x)的圖象關(guān)于直線x= 對(duì)稱(chēng),則g(x)的圖象的一個(gè)對(duì)稱(chēng)中心為(
A.( ,0)
B.( ,0)
C.( ,0)
D.( ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+|x|﹣|x﹣5|+2.
(1)求不等式f(x)<0的解集;
(2)若關(guān)于x的不等式|f(x)|≤m的整數(shù)解僅有11個(gè),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案