如圖所示是某一幾何體的三視圖,則它的體積為( 。
A、16+12π
B、48+12π
C、64+12π
D、64+16π
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:幾何體是圓柱與正四棱錐的組合體,根據(jù)三視圖判斷圓柱的高與底面半徑,判斷正四棱錐的高及側(cè)面上的斜高,求出正四棱錐的底面邊長,把數(shù)據(jù)代入圓柱與棱錐的體積公式計算.
解答: 解:由三視圖知:幾何體是圓柱與正四棱錐的組合體,
圓柱的高為3,底面直徑為4,∴圓柱的體積為π×22×3=12π;
正四棱錐的高為3,側(cè)面上的斜高為5,∴正四棱錐的底面邊長為2
52-32
=8,
∴四棱錐的體積為
1
3
×82×3=64.
故幾何體的體積V=64+12π.
故選:C.
點評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

農(nóng)業(yè)技術(shù)員進行某種作物的種植密度試驗,把一塊試驗田劃分為8塊面積相等的區(qū)域(除了種植密度,其它影響作物生長的因素都保持一致),種植密度和單株產(chǎn)量統(tǒng)計如下:

根據(jù)上表所提供信息,第
 
號區(qū)域的總產(chǎn)量最大,該區(qū)域種植密度為
 
株/m2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在R上的函數(shù)f(x)滿足f(1)=1,f′(x)>
1
3
,其中f′(x)是f(x)的導函數(shù),則不等式
f(x3)<
1
3
x3+
2
3
的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定積分
3
1
(-3)dx等于(  )
A、-6B、6C、-3D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=0.3-0.2,b=log0.50.8,c=log0.53,那么a,b,c的大小關(guān)系是(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一觀覽車的主架示意圖如圖所示,其中O為輪軸的中心,距地面32m(即OM長),巨輪的半徑為30m,AM=BP=2m,巨輪逆時針旋轉(zhuǎn)且每12分鐘轉(zhuǎn)動一圈.若點M為吊艙P的初始位置,經(jīng)過t分鐘,該吊艙P距離地面的高度為h(t)m,則h(t)=( 。
A、30sin(
π
12
t-
π
2
)+30
B、30sin(
π
6
t-
π
2
)+30
C、30sin(
π
6
t-
π
2
)+32
D、30sin(
π
6
t-
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的是( 。
A、y=x2
B、y=2|x|
C、y=log2
1
|x|
D、y=sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某三棱錐的三視圖如圖所示,則其表面中,直角三角形的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
的一段圖象過點(0,1),如圖所示.
(1)求函數(shù)f(x)的表達式;
(2)把f(x)的圖象向右平移
π
4
個單位長度得到g(x)的圖象,求g(x)的對稱軸方程和對稱中心.

查看答案和解析>>

同步練習冊答案