如圖,在四邊形ABCD中,已知AB=13,AC=10,AD=5,CD=數(shù)學公式,數(shù)學公式
(1)求cos∠BAC的值;
(2)求sin∠CAD的值;
(3)求△BAD的面積.

解:(1)在四邊形ABCD中,已知AB=13,AC=10,,則有 cos∠BAC===
(2)在△ADC中,AC=10,AD=5,CD=,cos∠CAD==,∴sin∠CAD=
(3)由(1)可得cos∠BAC=,∴sin∠BAC=,從而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=+=,
∴△BAD的面積S==28.
分析:(1)在四邊形ABCD中,根據(jù)cos∠BAC= 運算求得結果.
(3)根據(jù)cos∠BAC=,求得sin∠BAC=,從而利用兩角和的正弦公式求得sin∠BAD=sin(∠BAC+∠CAD) 的值,再由△BAD的面積S= 求得結果.
點評:本題主要考查余弦定理的應用,兩個向量夾角公式、兩角和的正弦公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線段AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
①當t>
35
時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數(shù)關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習冊答案