【題目】a為非負實數(shù),函數(shù).

1)當時,畫出函數(shù)的草圖,并寫出函數(shù)的單調遞增區(qū)間;

2)若函數(shù)有且只有一個零點,求實數(shù)a的取值范圍.

【答案】1)草圖見解析,的增區(qū)間為;(2.

【解析】

1)可按分類去掉絕對值符號后作圖,由圖象得出單調區(qū)間;

2)按分類去掉絕對值符號后依照(1),得函數(shù)單調性,先討論特殊情形滿足題意,在,因此函數(shù)在上有唯一零點,這樣在上應無零點,此時最大值應小于0。

1)函數(shù)的草圖.

由圖可知函數(shù)的增區(qū)間為.

2)因為,而,

有唯一零點。符合題意.

上單調遞增,,

上有唯一零點.上單調遞增,在上單調遞減.

由題意,要使R上有唯一零點,則上沒有零點,

故在的最大值

綜合上述,a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某民營企業(yè)生產(chǎn)AB兩種產(chǎn)品,根據(jù)市場調查與預測,A產(chǎn)品的利潤y與投資x成正比,其關系如圖甲,B產(chǎn)品的利潤y與投資x的算術平方根成正比,其關系如圖乙注:利潤與投資單位為萬元

分別將A,B兩種產(chǎn)品的利潤y表示為投資x的函數(shù)關系式;

該企業(yè)已籌集到10萬元資金,并全部投入AB兩種產(chǎn)品的生產(chǎn)問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校研究性學習小組調查學生使用智能手機對學習成績的影響,詢問了30名同學,得到如下的列聯(lián)表:

使用智能手機

不使用智能手機

總計

學習成績優(yōu)秀

4

8

12

學習成績不優(yōu)秀

16

2

18

總計

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學習成績有影響?

(Ⅱ)從使用智能手機的20名同學中,按分層抽樣的方法選出5名同學,求所抽取的5名同學中學習成績優(yōu)秀學習成績不優(yōu)秀的人數(shù);

(Ⅲ)從問題()中被抽取的5名同學,再隨機抽取3名同學,試求抽取3名同學中恰有2名同學為學習成績不優(yōu)秀的概率.

參考公式:,其中

參考數(shù)據(jù):

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】夏天喝冷飲料已成為年輕人的時尚. 某飲品店購進某種品牌冷飲料若干瓶,再保鮮.

(Ⅰ)飲品成本由進價成本和可變成本(運輸、保鮮等其它費用)組成.根據(jù)統(tǒng)計,“可變成本”(元)與飲品數(shù)量(瓶)有關系.之間對應數(shù)據(jù)如下表:

飲品數(shù)量(瓶)

2

4

5

6

8

可變成本(元)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;如果該店購入20瓶該品牌冷飲料,估計“可變成本”約為多少元?

(Ⅱ)該飲品店以每瓶10元的價格購入該品牌冷飲料若干瓶,再以每瓶15元的價格賣給顧客。如果當天前8小時賣不完,則通過促銷以每瓶5元的價格賣給顧客(根據(jù)經(jīng)驗,當天能夠把剩余冷飲料都低價處理完畢,且處理完畢后,當天不再購進).該店統(tǒng)計了去年同期100天該飲料在每天的前8小時內的銷售量(單位:瓶),制成如下表:

每日前8個小時

銷售量(單位:瓶)

15

16

17

18

19

20

21

頻數(shù)

10

15

16

16

15

13

15

若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,若當天購進18瓶,求當天利潤的期望值.

(注:利潤=銷售額購入成本 “可變本成”)

參考公式:回歸直線方程為,其中

參考數(shù)據(jù):, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,點為邊的中點.

(Ⅰ)證明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星至地球的連線)在相同的時間內掃過的面積相等.設橢圓的長軸長、焦距分別為李明根據(jù)所學的橢圓知識,得到下列結論:

①衛(wèi)星向徑的最小值為,最大值為

②衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁;

③衛(wèi)星運行速度在近地點時最小,在遠地點時最大

其中正確結論的個數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;

2)當時,不等式上恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水產(chǎn)試驗廠實行某種魚的人工孵化,10 000個魚卵能孵化8 513尾魚苗,根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)這種魚卵的孵化率(孵化概率)是多少?

(2)30 000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5 000尾魚苗,大概需要多少個魚卵?(精確到百位)

查看答案和解析>>

同步練習冊答案