已知等式cosα•cos2α=
sin4α
4sinα
,cosα•cos2α•cos4α=
sin8α
8sinα
,…,請你寫出一個具有一般性的等式,使你寫出的等式包含了已知等式(不要求證明),那么這個等式是:
cosα•cos2α•cos4α×…×cos2n-1α=
sin2nα
2nsinα
cosα•cos2α•cos4α×…×cos2n-1α=
sin2nα
2nsinα
分析:分析兩邊三角的函數(shù)名稱及各個角的構成及關系,進行歸納寫出即可.
解答:解:三角關系式的左邊三角函數(shù)名均為余弦,角為α的乘方,可以得出一般性等式為
cosα•cos2α•cos4α×…×cos2n-1α=
sin2nα
2nsinα

故答案為:cosα•cos2α•cos4α×…×cos2n-1α=
sin2nα
2nsinα
點評:本題考查合情推理的能力,善于尋找數(shù)字規(guī)律,是解決數(shù)字型歸納推理的共同點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,過右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點.
(1)求直線ON(O為坐標原點)的斜率KON
(2)對于橢圓C上任意一點M,試證:總存在角θ(θ∈R)使等式:
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,cosα),
b
=(1,sinβ),
c
=(3,1),且(
a
+
b
)∥
c

(1)若α=
π
3
,求cos2β的值;
(2)證明:不存在角α,使得等式|
a
+
c
|=|
a
-
c
|成立;
(3)求
b
c
-
a
2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點;又函數(shù)y=asinx+3bcosx圖象的一條對稱軸的方程是x=
π
6
.(1)求橢圓C的離心率e與直線AB的方程;(2)對于任意一點M∈C,試證:總存在角θ(θ∈R)使等式
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)定理:若函數(shù)f(x)在閉區(qū)間[m,n]上是連續(xù)的單調函數(shù),且f(m)f(n)<0,則存在唯一一個x0∈(m,n)使f(x0)=0.已知f(x)=sinx(0≤x≤
π
2
)

(1)若g(x)=f(cosx)-ax(0≤x≤
π
2
)
是減函數(shù),求a的取值范圍.
(2)是否存在c,d∈(0,
π
2
)使f(cosc)=c和cos[f(d)]=d
同時成立,若存在,指出c、d之間的等式關系,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CAB兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

同步練習冊答案