【題目】如圖,過拋物線()上一點,作兩條直線分別交拋物線于點,,若與的斜率滿足.
(1)證明:直線的斜率為定值,并求出該定值;
(2)若直線在軸上的截距,求面積的最大值.
【答案】(1)證明見解析,;(2).
【解析】
(1)由拋物線()過點,求得,設,,由,得到,利用點差法可得()=,從而可得結果;(2)設直線的方程為,聯(lián)立直線方程與拋物線方程可得,,利用點到直線距離公式、弦長公式,由三角形面積公式可得,利用導數(shù)研究函數(shù)的單調性,由單調性可得三角形面積的最大值.
(1)由拋物線()過點,得,即.
設,,因為,所以.
因為,,代入上式得到,
通分整理得,
設直線的斜率為,由,,
兩式相減可化為
得()=.
由于,將其代入上式得.
(2)設直線的方程為,
由,
得,
因為,所以,且,,
所以.
又點到直線的距離為,
所以.
令,其中,
則由,
當時,,所以單調遞減;當,,所以單調遞增,故的最大值為,
故的面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】元宵節(jié)燈展后,如圖懸掛有6盞不同的花燈需要取下,每次取1盞,共有__________種不同取法.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[2019·武邑中學]已知關于的一元二次方程,
(1)若一枚骰子擲兩次所得點數(shù)分別是,,求方程有兩根的概率;
(2)若,,求方程沒有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,.
分數(shù)段 | ||||
1∶1 | 2∶1 | 3∶4 | 4∶5 |
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應分數(shù)段的人數(shù)()之比如下表所示,求數(shù)學成績在之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜好體育運動是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數(shù)為6.
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯概率不超過0.01的前提下認為喜好體育運動與性別有關?說明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱ABCDA1B1C1D1中,側棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且點M和N分別為B1C和D1D的中點.
(Ⅰ)求證:MN∥平面ABCD;
(Ⅱ)求二面角D1-AC-B1的正弦值;
(Ⅲ)設E為棱A1B1上的點.若直線NE和平面ABCD所成角的正弦值為,求線段A1E的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其圖象與軸相鄰的兩個交點的距離為.
(1)求函數(shù)的解析式;
(2)若將的圖象向左平移個長度單位得到函數(shù)的圖象恰好經(jīng)過點,求當取得最小值時,在上的單調區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com