【題目】如圖:三棱柱的所有棱長均相等,,的中點.

(1)求證:平面⊥平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)見解析;(2) .

【解析】試題分析:(1)連接CB1BC1于點O,利用等腰三角形的三線合一證明線線垂直,再利用線面垂直的判定定理和面面垂直的判定定理進(jìn)行證明;(2)A1B1的中點

H,連接C1HBH,利用面面垂直的判定定理和性質(zhì)定理得到線面垂直,即作出線面角,再利用直角三角形進(jìn)行求解.

試題解析:(1)

如圖1,連接CB1BC1于點O,則OCB1BC1的中點,連接EC,EB1 依題意有EB=EC1=EC=EB1

EOCB1EOBC1, ∴EO⊥平面BCC1B1,

∴平面EBC1⊥平面BCC1B1

(2)如圖2取A1B1的中點為H,連接C1H、BH,

,∴平面A1B1C1⊥平面BB1A1A,

平面A1B1C1平面BB1A1A= A1B1,

A1C1=B1C1,HA1B1的中點,∴C1HA1B1,∴C1H⊥平面BB1A1A,

C1BH為直線BC1與平面BB1A1A所成的角。

令棱長為2a,則C1H=,BC1=,

所以直線BC1與平面BB1A1A所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個旅行者的如下信息:

①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;

②騎自行車者是變速運(yùn)動,騎摩托車者是勻速運(yùn)動;

③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;

④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.

其中,正確信息的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不太主動參加班級工作

合計

學(xué)習(xí)積極性一般

6

19

25

合計

24

26

50

(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系?

, n=a+b+c+d.

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

如圖,四邊形是正方形,均是以為直角頂點的等腰直角三角形,點的中點,點是邊上的任意一點.

1)求證: ;

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如下表所示:

零件的個數(shù)x/個

2

3

4

5

加工的時間y/h

2.5

3

4

4.5

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;

(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;

(3)試預(yù)測加工10個零件需要多少時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是正方體,畫出圖中陰影部分的平面與平面ABCD的交線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,E,F分別為B1C1,A1D1的中點.求證:平面ABB1A1與平面CDFE相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.如圖,在三棱錐V-ABC,VO⊥平面ABC,O∈CDVA=VB,AD=BD,則下列結(jié)論中不一定成立的是 (  )

A. AC=BC

B. VC⊥VD

C. AB⊥VC

D. SVCD·AB=SABC·VO

查看答案和解析>>

同步練習(xí)冊答案