【題目】.如圖,在三棱錐V-ABC,VO⊥平面ABC,O∈CDVA=VB,AD=BD,則下列結(jié)論中不一定成立的是 (  )

A. AC=BC

B. VC⊥VD

C. AB⊥VC

D. SVCD·AB=SABC·VO

【答案】B

【解析】因?yàn)閂A=VB,AD=BD,

所以VD⊥AB.因?yàn)閂O⊥平面ABC,

AB平面ABC,所以VO⊥AB.

又VO∩VD=V,VO平面VCD,VD平面VCD,

所以AB⊥平面VCD,

又CD平面VCD,VC平面VCD,

所以AB⊥VC,AB⊥CD.

又AD=BD,所以AC=BC(線段垂直平分線的性質(zhì)),因?yàn)閂O⊥平面ABC,

所以VV-ABC=S△ABC·VO.

因?yàn)锳B⊥平面VCD,

所以VV-ABC=VB-VCD+VA-VCD

=S△VCD·BD+S△VCD·AD

=S△VCD·(BD+AD)

=S△VCD·AB,

所以S△ABC·VO=S△VCD·AB,

即S△VCD·AB=S△ABC·VO.綜上知,A,C,D正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:三棱柱的所有棱長(zhǎng)均相等,,的中點(diǎn).

(1)求證:平面⊥平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“菊花”型煙花是最壯觀的煙花之一,制造時(shí)一般是期望在它達(dá)到最高點(diǎn)時(shí)爆裂.通過(guò)研究,發(fā)現(xiàn)該型煙花爆裂時(shí)距地面的高度(單位:米)與時(shí)間(單位:秒)存在函數(shù)關(guān)系,并得到相關(guān)數(shù)據(jù)如表:

時(shí)間

1

高度

(1)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述該型煙花爆裂時(shí)距地面的高度與時(shí)間的變化關(guān)系: , ,確定此函數(shù)解析式并簡(jiǎn)單說(shuō)明理由;

(2)利用你選取的函數(shù),判斷煙花爆裂的最佳時(shí)刻,并求此時(shí)煙花距地面的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐ABCD中,AB⊥平面BCDCD⊥BD .

1)求證:CD⊥平面ABD;

2)若ABBDCD1,MAD中點(diǎn),求三棱錐AMBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正項(xiàng)數(shù)列的前項(xiàng)和,且滿足.

(Ⅰ)計(jì)算的值,猜想的通項(xiàng)公式,并證明你的結(jié)論;

(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且的離心率為.

(1)求的方程;

(2)過(guò)的頂點(diǎn)作兩條互相垂直的直線與橢圓分別相交于兩點(diǎn).若的角平分線方程為,求的面積及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍. 

(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中, , ,平面平面,四邊形是矩形, ,點(diǎn)在線段上,且

(1)求證: 平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案