已知函數(shù)f(x)=(a+1)lnx+ax2+1
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)a<-1,如果對(duì)任意x1,x2∈(0,+∞),當(dāng)x1≥x2,都有|f(x1)-f(x2)|≥4(x1-x2),求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)f′(x)=
a+1
x
+2ax=
2ax2+a+1
x
,當(dāng)a≥0時(shí),f′(x)>0,故f(x)在(0,+∞)上單調(diào)遞增;當(dāng)a≤-1時(shí),f′(x)<0,故f(x)在(0,+∞)上單調(diào)遞減;當(dāng)-1<a<0時(shí),令f′(x)=0,解得x=
-
a+1
2a
,f(x)在(0,
-
a+1
2a
)上單調(diào)遞增,在(
-
a+1
2a
,+∞)上單調(diào)遞減.
(Ⅱ)x1≥x2,而a<-1,f(x)在(0,+∞)上單調(diào)遞減,從而?x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|等價(jià)于?x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1 ,由此能示出a的取值范圍.
解答: 解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞)
f′(x)=
a+1
x
+2ax=
2ax2+a+1
x
,
當(dāng)a≥0時(shí),f′(x)>0,故f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a≤-1時(shí),f′(x)<0,故f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)-1<a<0時(shí),令f′(x)=0,解得x=
-
a+1
2a

則當(dāng)x∈(0,
-
a+1
2a
)時(shí),f′(x)>0,
x∈(
-
a+1
2a
,+∞)時(shí),f′(x)<0
故f(x)在(0,
-
a+1
2a
)上單調(diào)遞增,在(
-
a+1
2a
,+∞)上單調(diào)遞減.
(Ⅱ)∵x1≥x2,而a<-1,
∴由(1)知f(x)在(0,+∞)上單調(diào)遞減,
從而?x1,x2∈(0,+∞),
|f(x1)-f(x2)|≥4|x1-x2|等價(jià)于?x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1
令g(x)=f(x)+4x,則g′(x)=
a+1
x
+2ax+4
①等價(jià)于g(x)在(0,+∞)上單調(diào)遞減,
a+1
x
+2ax+4≤0在(0,+∞)上恒成立
從而a≤
-4x-1
2x2+1
=
(2x-1)2-4x2-2
2x2+1
=
(2x-1)2
2x2+1
-2
≥-2.
故a的取值范圍為(-∞,-2].
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的討論,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|0≤x+2≤5},B={x|x<-1或x>4},則A∩B等于( 。
A、{x|x≤3或x>4}
B、{x|-1<x≤3}
C、{x|3≤x<4}
D、{x|-2≤x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|
x-1
x+1
<0},B={x||x-b|<a},若“a=1”是“A∩B≠∅”的充分條件,則b的取值范圍是( 。
A、-2≤b<0
B、0<b≤2
C、-3<b<-1
D、-1≤b<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,3,5,7,9,11},M={3,5,9},N={7,9},則集合{1,11}=( 。
A、M∪N
B、M∩N
C、∁U(M∪N)
D、∁U(M∩N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工程機(jī)械廠(chǎng)根據(jù)市場(chǎng)要求,計(jì)劃生產(chǎn)A、B兩種型號(hào)的大型挖掘機(jī)共100臺(tái),該廠(chǎng)所籌生產(chǎn)資金不少于22400萬(wàn)元,但不超過(guò)22500萬(wàn)元,且所籌資金全部用于生產(chǎn)這兩種型號(hào)的挖掘機(jī),所生產(chǎn)的這兩種型號(hào)的挖掘機(jī)可全部售出,此兩種型號(hào)挖掘機(jī)的生產(chǎn)成本和售價(jià)如下表所示:
型號(hào)AB
成本(萬(wàn)元/臺(tái))200240
售價(jià)(萬(wàn)元/臺(tái))250300
(1)該廠(chǎng)對(duì)這兩種型號(hào)挖掘機(jī)有幾種生產(chǎn)方案?
(2)該廠(chǎng)如何生產(chǎn)獲得最大利潤(rùn)?
(3)根據(jù)市場(chǎng)調(diào)查,每臺(tái)B型挖掘機(jī)的售價(jià)不會(huì)改變,每臺(tái)A型挖掘機(jī)的售價(jià)將會(huì)提高m萬(wàn)元(m>0),該廠(chǎng)如何生產(chǎn)可以獲得最大利潤(rùn)?(注:利潤(rùn)=售價(jià)-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩艘貨輪都要在某個(gè)泊位停靠6小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),試求兩船中有一艘在停泊位時(shí),另一艘船必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)S(x)=(x-x12+(x-x22+…+(x-xn2,其中x1,x2,x3,…,xn均為已知常數(shù).
(Ⅰ)當(dāng)x取何值時(shí),S(x)取得極小值;
(Ⅱ)已知當(dāng)n=2時(shí),S(x)≥
1
2
恒成立,且f(x)=a(x-1)+(x2-x)ex當(dāng)f(|x1-x2|)≥0恒成立時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在(0,+∞)上的增函數(shù),f(xy)=f(x)+f(y)
(1)證明:f(
x
y
)=f(x)-f(y)
(2)已知f(3)=1且f(a)>f(a-1)+2,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)的和Sn,且a1=1,an+1=-
1
3
Sn(n∈N*
(1)求a2,a3,a4的值;  
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案