定義在R上的函數(shù)f(x),在[2,+∞)單調遞增,對任意實數(shù)x恒有f(2+x)=f(2-x)成立,若f(x)<f(x+2),則x的取值范圍是
 
考點:抽象函數(shù)及其應用,函數(shù)單調性的性質
專題:函數(shù)的性質及應用
分析:依題意知,函數(shù)y=f(x)關于直線x=2對稱,通過對x范圍的討論分析,結合函數(shù)的單調性質即可求得x的取值范圍.
解答: 解:∵f(2+x)=f(2-x),
∴函數(shù)y=f(x)關于直線x=2對稱,
又f(x)在[2,+∞)單調遞增,
∴f(x)在(-∞,2]上單調遞減,
∴當x≥2時,f(x)<f(x+2)恒成立;
當x+2≤2,即x≤0時,總有f(x)≥f(x+2),故f(x)<f(x+2)恒不成立;
當0<x<2時,要使f(x)<f(x+2)恒成立,必須點M(x+2,f(x+2))到直線x=2的距離大于點N(x,f(x))到直線x=2的距離,即(x+2)-2>2-x,
解得:1<x<2;
綜上所述,x的取值范圍是:(1,+∞).
故答案為:(1,+∞).
點評:本題考查函數(shù)的對稱性與單調性,考查分類討論思想與等價轉化思想的綜合應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=alnx-bx2,其圖象在點P(2,f(2))處切線的斜率為-3.
(1)求函數(shù)f(x)的單調區(qū)間(用只含有b的式子表示);
(2)當a=2時,令g(x)=f(x)-kx,設x1,x2(x1<x2)是函數(shù)g(x)=0的兩個根,x0是x1,x2的等差中項,求證:g′(x0)<0(g′(x)為函數(shù)g(x)的導函數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)同時滿足下列條件:
(1)y=f(x)是二次函數(shù);
(2)f(-2014)=f(2022);
(3)函數(shù)g(x)=f(x)+x2+4x+5是R上的單調函數(shù).
則滿足上述要求的函數(shù)f(x)可以是
 
.(寫出一個即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-x2+ax-b,a、b∈[0,4],a、b∈R,則f(1)>0的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在實數(shù)集R中,我們定義的大小關系“>”為全體實數(shù)排了一個“序”,類似的,我們在平面向量集D={
a
|
a
=(x,y),x∈R,y∈R}上也可以定義一個稱為“序”的關系,記為“?”.定義如下:對于任意兩個向量
a1
=(x1,y1),
a2
=(x2,y2),
a1
?
a2
當且僅當“x1>x2”或“x1=x2且y1>y2”.按上述定義的關系“?”,給出如下四個命題:
①若
e1
=(1,0),
e2
=(0,1),
0
=(0,0),則
e1
?
e2
?
0
;
②若
a1
a2
,
a2
a3
,則
a1
a3
;
③若
a1
a2
,則對于任意
a
∈D,(
a1
+
a
)>(
a2
+
a
);
④對于任意向量
a
0
0
=(0,0)若
a1
a2
,則
a
a1
a
a2

其中真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=
|x|
|x|-1
給出下列四個命題:
①當x>0時,y=f(x)單調遞減且沒有最值;
②方程f(x)=kx+b(k≠0)一定有解;
③如果方程f(x)=k有解,則解的個數(shù)一定是偶數(shù);
④y=f(x)是偶函數(shù)且有最小值.則其中真命題是
 
.(只要寫標題號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式(
20
n
-m)•ln(
m
n
)≥0對任意正整數(shù)n恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設D是圖中邊長為2的正方形區(qū)域,E是函數(shù)y=x3的圖象與x軸及x=±1圍成的陰影區(qū)域.向D中隨機投一點,則該點落入E中的概率為( 。
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,右焦點到直線x+y+
6
=0的距離為2
3

(Ⅰ) 求橢圓的方程;
(Ⅱ) 過點M(0,-1)作直線l交橢圓于A,B兩點,交x軸于N點,滿足
NA
=-
7
5
NB
,求直線l的方程.

查看答案和解析>>

同步練習冊答案