(本小題滿分14分)

設(shè)函數(shù).

(1) 試問函數(shù)f(x)能否在x=-1時取得極值?說明理由;

(2) 若a=-1,當x∈[-3,4]時,函數(shù)f(x)與g(x)的圖像有兩個公共點,求c的取值范圍.

 

【答案】

解:(1) 由題意f′(x)=x2-2ax-a,

假設(shè)在x=-1時f(x)取得極值,則有f′(-1)=1+2a-a=0,∴a=-1,……………………… 4分

而此時,f′(x)=x2+2x+1=(x+1)2≥0,函數(shù)f(x)在R上為增函數(shù),無極值.

這與f(x)在x=-1有極值矛盾,所以f(x)在x=-1處無極值.…………………………… 6分

(2) 設(shè)f(x)=g(x),則有x3-x2-3x-c=0,∴c=x3-x2-3x,

設(shè)F(x)= x3-x2-3x,G(x)=c,令F′(x)=x2-2x-3=0,解得x1=-1或x=3.

列表如下:

x

l  -3

l  (-3,-1)

l  -1

l  (-1,3)

l  3

l  (3,4)

l  4

F′(x)

l   

l  +

l  0

l  -

l  0

l  +

l   

F(x)

l  -9

l  增

l  減

l  -9

l  增

-

 

由此可知:F(x)在(-3,-1)、(3,4)上是增函數(shù),在(-1,3)上是減函數(shù).……………………10分

x=-1時,F(x)取得極大值;當x=3時,F(x)取得極小值

F(-3)=F(3)=-9,而

如果函數(shù)f(x)與g(x)的圖像有兩個公共點,則函數(shù)F(x)與G(x)有兩個公共點,

所以c=-9.……………………………………………14分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案