過點(diǎn)P(-2,1)引拋物線y2=4x的兩條切線,切點(diǎn)分別為A、B,F(xiàn)是拋物線的焦點(diǎn),則直線PF與直線AB的斜率之和為
 
考點(diǎn):拋物線的簡單性質(zhì)
專題:直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:先確定F點(diǎn)坐標(biāo),進(jìn)而求出直線PF斜率kPF,再求出兩個(gè)切點(diǎn)AB的坐標(biāo),求出直線AB斜率kAB,相加可得答案.
解答: 解:∵拋物線y2=4x的焦點(diǎn)F坐標(biāo)為(1,0),點(diǎn)P(-2,1),
故直線PF斜率kPF=
1
-2-1
=-
1
3

設(shè)點(diǎn)P(-2,1)與拋物線y2=4x相切的直線為:x+2=m(y-1),
則y2=4(my-m-2),即y2-4my+4m+8=0的△=16m2-16m-32=0,
解得:m=-1,或m=2,
當(dāng)m=-1時(shí),方程y2-4my+4m+8=0可化為y2+4y+4=0,解得:y=-2,代入y2=4x得:x=1,
當(dāng)m=2時(shí),方程y2-4my+4m+8=0可化為y2-8y+16=0,解得:y=4,代入y2=4x得:x=4,
即A,B兩點(diǎn)的坐標(biāo)為:(1,-2),(4,4),
故直線AB斜率kAB=
4+2
4-1
=2,
故直線PF與直線AB的斜率之和為2-
1
3
=
5
3

故答案為:
5
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是拋物線的簡單性質(zhì),直線的斜率,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)A(2,-3).
(Ⅰ)若l與直線y=-2x+5平行,求其方程;
(Ⅱ)若l與直線y=-2x+5垂直,求其方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-x
+lg(x+2)的定義域?yàn)椋ā 。?/div>
A、(-2,1)
B、[-2,1]
C、[-2,1)
D、(-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R+,且方程x2-(3a+2b-6)x+a+b-3=0的兩根分別為一個(gè)橢圓和一個(gè)雙曲線的離心率,則3a+b的取值范圍為( 。
A、(0,6)
B、(4,+∞)
C、(0,5)
D、(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在{1,2,3,…,5m}中任取一個(gè)數(shù)n,記ξ為f(n)=
2n2+12n+1
10n
的整數(shù)部分.
(1)當(dāng)m=1時(shí),求ξ的概率分布和數(shù)學(xué)期望.
(2)求ξ的概率分布及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

單擺從某點(diǎn)開始來回?cái)[動(dòng),它相對(duì)于平衡位置O的位移S(厘米)和時(shí)間t(秒)的函數(shù)關(guān)系為:S=Asin(ωt+φ)(A>0,ω>0,0<φ<
π
2
),已知單擺每分鐘擺動(dòng)4次,它到平衡位置的最大位移為6厘米,擺動(dòng)起始位置相對(duì)平衡位置的位移為3厘米.求:
(1)S和t的函數(shù)關(guān)系式;
(2)第2.5秒時(shí)單擺的位移.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,S是△ABC所在平面外一點(diǎn),SA⊥SB,SB⊥SC,SC⊥SA,H是△ABC的垂線的交點(diǎn),求證:SH⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為雙曲線x2-y2=1的左右焦點(diǎn),P是雙曲線上在x軸上方的點(diǎn),∠F1PF2為直角,則sinPF1F2的所有可能取值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面四邊形ABCD中,點(diǎn)E、F分別是邊AD、BC的中點(diǎn),且AB=1,EF=
2
,CD=
3
,若
AD
BC
=15,則
AC
BD
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案