【題目】如圖,二面角α﹣1﹣β的平面角的大小為60°,A,B是1上的兩個定點,且AB=2.C∈α,D∈β,滿足AB與平面BCD所成的角為30°,且點A在平面BCD上的射影H在△BCD的內部(包括邊界),則點H的軌跡的長度等于( )
A.B.C.D.
【答案】A
【解析】
根據題意:點H的軌跡是以點B為球心,以為半徑的球與以AB為軸,母線AH與軸AB成60°的圓錐側面交線的一部分,該部分是圓心角為的弧長,只要求出半徑即可.
如圖所示:
因為AB與平面BCD所成的角為30°,且點A在平面BCD上的射影H, AB=2,
所以,
所以點H在以點B為球心,以為半徑的球面上,
又點H在以AB為軸,以AH為母線的圓錐的側面上,
所以點H的軌跡為以點B為球心,以為半徑的球與以AB為軸,母線AH與軸AB成60°的圓錐側面交線的一部分,
即圖中扇形EOF的弧EF,且扇形所在平面垂直于AB,
因為二面角α﹣1﹣β的平面角的大小為60°,
所以∠EOF=60°,
又,
所以點H的軌跡的長度等于,
故選:A
科目:高中數學 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次乙肝普查,為此需要抽驗960人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個人的血分別化驗,這時需要驗960次.
方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血就只需檢驗一次;否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.
假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.
(1)設方案②中,某組個人中每個人的血化驗次數為,求的分布列;
(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案①,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位在2019年重陽節(jié)組織50名退休職工(男、女各25名)旅游,退休職工可以選擇到甲、乙兩個景點其中一個去旅游.他們最終選擇的景點的結果如下表:
男性 | 女性 | |
甲景點 | 20 | 10 |
乙景點 | 5 | 15 |
(1)據此資料分析,是否有的把握認為選擇哪個景點與性別有關?
(2)按照游覽不同景點用分層抽樣的方法,在女職工中選取5人,再從這5人中隨機抽取2人進行采訪,求這2人游覽的景點不同的概率.
附:,.
P() | 0.010 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)已知曲線的極坐標方程為,點是曲線與的交點,點是曲線與的交點,、均異于原點,且,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓上一點關于原點的對稱點為,點, 的面積為,直線過上的點.
(1)求的方程;
(2)設為的短軸端點,直線過點交于,證明:四邊形的兩條對角線的交點在定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,海岸公路MN的北方有一個小島A(大小忽略不計)盛產海產品,在公路MN的B處有一個海產品集散中心,點C在B的正西方向10處,,,計劃開辟一條運輸線將小島的海產品運送到集散中心.現有兩種方案:①沿線段AB開辟海上航線:②在海岸公路MN上選一點P建一個碼頭,先從海上運到碼頭,再公路MN運送到集散中心.已知海上運輸、岸上運輸費用分別為400元/、200元/.
(1)求方案①的運輸費用;
(2)請確定P點的位置,使得按方案②運送時運輸費用最低?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com