【題目】在△ABC中,已知 ,sinB=cosAsinC,S△ABC=6,P為線段AB上的點(diǎn),且 ,則xy的最大值為

【答案】3
【解析】解:△ABC中,設(shè)AB=c,BC=a,AC=b,∵sinB=cosAsinC,sin(A+C)=sinCcosnA,

即sinAcosC+sinCcosA=sinCcosA.

∴sinAcosC=0,∵sinA≠0,∴cosC=0,C=90°.

=9,S△ABC=6,∴bccosA=9, bcsinA=6,∴tanA=

根據(jù)直角三角形可得sinA= ,cosA= ,bc=15,∴c=5,b=3,a=4.

以AC所在的直線為x軸,以BC所在的直線為y軸建立直角坐標(biāo)系可得C(0,0),A(3,0),B(0,4).

P為線段AB上的一點(diǎn),則存在實(shí)數(shù)λ使得 +(1﹣λ) =(3λ,4﹣4λ)(0≤λ≤1).

設(shè) = , = ,則| |=| |=1,且 =(1,0), =(0,1).

=(x,0)+(0,y)=(x,y),可得x=3λ,y=4﹣4λ則4x+3y=12,

12=4x+3y≥2 ,解得xy≤3,

故所求的xy最大值為:3.

所以答案是 3.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面向量的基本定理及其意義的相關(guān)知識可以得到問題的答案,需要掌握如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實(shí)數(shù)、,使

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知單位圓x2+y2=1與x軸正半軸交于點(diǎn)P,當(dāng)圓上一動(dòng)點(diǎn)Q從P出發(fā)沿逆時(shí)針方向旋轉(zhuǎn)一周回到P點(diǎn)后停止運(yùn)動(dòng)設(shè)OQ掃過的扇形對應(yīng)的圓心角為xrad,當(dāng)0<x<2π時(shí),設(shè)圓心O到直線PQ的距離為y,y與x的函數(shù)關(guān)系式y(tǒng)=f(x)是如圖所示的程序框圖中的①②兩個(gè)關(guān)系式

(Ⅰ)寫出程序框圖中①②處的函數(shù)關(guān)系式;

(Ⅱ)若輸出的y值為2,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時(shí),不等式f(x)≥ ﹣e1x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝批發(fā)市場1-5月份的服裝銷售量與利潤的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷售量 (萬件)

3

6

4

7

8

利潤 (萬元)

19

34

26

41

46

1)從這五個(gè)月的利潤中任選2個(gè),分別記為 ,求事件, 均不小于30”的概率;

2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請根據(jù)前4個(gè)月的數(shù)據(jù),求出關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的利潤的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)的誤差不超過2萬元,則認(rèn)為得到的利潤的估計(jì)數(shù)據(jù)是理想的請用表格中第5個(gè)月的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的第5個(gè)月的利潤的估計(jì)數(shù)據(jù)是否理想參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)時(shí),函數(shù)的值域是_________.

【答案】[1,2]

【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),

≤x≤,

≤x+,

≤sin(x+)≤1,

函數(shù)f(x)的值域?yàn)?/span>[﹣1,2],

故答案為:[﹣1,2].

型】填空
結(jié)束】
15

【題目】若點(diǎn)O內(nèi),且滿足,設(shè)的面積, 的面積,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當(dāng)a=1時(shí),解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,設(shè)函數(shù)

1)若函數(shù)的圖象關(guān)于直線對稱,且時(shí),求函數(shù)的單調(diào)增區(qū)間;

2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)上的單調(diào)性;

(3)是否存在這樣的負(fù)實(shí)數(shù),使對一切恒成立,若存在,試求出取值的集合;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生會(huì)為了調(diào)查學(xué)生對2018年俄羅斯世界杯的關(guān)注是否與性別有關(guān),抽樣調(diào)查100人,得到如下數(shù)據(jù):

不關(guān)注

關(guān)注

總計(jì)

男生

30

15

45

女生

45

10

55

總計(jì)

75

25

100

根據(jù)表中數(shù)據(jù),通過計(jì)算統(tǒng)計(jì)量K2= ,并參考一下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

若由此認(rèn)為“學(xué)生對2018年俄羅斯年世界杯的關(guān)注與性別有關(guān)”,則此結(jié)論出錯(cuò)的概率不超過( )
A.0.10
B.0.05
C.0.025
D.0.01

查看答案和解析>>

同步練習(xí)冊答案