【題目】已知向量,,設函數(shù).
(1)若函數(shù)的圖象關于直線對稱,且時,求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當時,函數(shù)有且只有一個零點,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)平面向量數(shù)量積運算求解出函數(shù),利用函數(shù)的圖象關于直線對稱,且可得,結合三角函數(shù)的性質(zhì)可得其單調(diào)區(qū)間;(2)當時,求出函數(shù)的單調(diào)性,函數(shù)有且只有一個零點,利用其單調(diào)性求解求實數(shù)的取值范圍.
試題解析:
解:向量,,
(1)∵函數(shù)圖象關于直線對稱,
∴,解得:,∵,∴,
∴,由,
解得:,
所以函數(shù)的單調(diào)增區(qū)間為.
(2)由(1)知,∵,
∴,
∴,即時,函數(shù)單調(diào)遞增;
,即時,函數(shù)單調(diào)遞減.
又,
∴當或時函數(shù)有且只有一個零點.
即或,
所以滿足條件的.
科目:高中數(shù)學 來源: 題型:
【題目】某公司試銷某種“上海世博會”紀念品,每件按30元銷售,可獲利50%,設每件紀念品的成本為a元.
(1)試求a的值;
(2)公司在試銷過程中進行了市場調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件售價x(元)滿足關系y=-10x+800.設每天銷售利潤為W(元),求每天銷售利潤W(元)與每件售價x(元)之間的函數(shù)解析式;當每件售價為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)
已知動點M到點的距離等于M到點的距離的倍.
(1)求動點M的軌跡C的方程;
(2)若直線與軌跡C沒有交點,求的取值范圍;
(3)已知圓與軌跡C相交于兩點,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上的點,直線與(為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.
(1)求四棱錐P﹣ABCD的體積;
(2)求證:AD⊥PB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度(在平均數(shù)、方差或標準差中選兩個)分析,你認為選派哪位學生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
,曲線
過點
,且在點
處的切線方程為
.
(1)求
的值;
(2)證明:當
時,
;
(3)若當
時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com