【題目】某公司試銷某種“上海世博會(huì)”紀(jì)念品,每件按30元銷售,可獲利50%,設(shè)每件紀(jì)念品的成本為a元.

(1)試求a的值;

(2)公司在試銷過(guò)程中進(jìn)行了市場(chǎng)調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件售價(jià)x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷售利潤(rùn)為W(元),求每天銷售利潤(rùn)W(元)與每件售價(jià)x(元)之間的函數(shù)解析式;當(dāng)每件售價(jià)為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】(1) a=20;(2)詳見解析.

【解析】試題分析:(1) 每件按30元銷售,可獲利50%,成本為a元,則a(1+50%)=30,解出a值即可;(2) 每天銷售利潤(rùn)=銷售量 (每件售價(jià)-成本) ,寫出每天銷售利潤(rùn)W(元)與每件售價(jià)x(元)之間的函數(shù)解析式,化簡(jiǎn)得到二次函數(shù),用配方法求出最值.

試題解析:

(1)∵按30元銷售,可獲利50%,∴a(1+50%)=30,解得a=20.

(2)∵銷售量y(件)與每件售價(jià)x(元)滿足關(guān)系y=-10x+800,則每天銷售利潤(rùn)W(元)與每件售價(jià)x(元)滿足W=(-10x+800)(x-20)=-10x2+1 000x+16 000=-10(x-50)2+9 000,

故當(dāng)x=50時(shí),W取最大值9 000,

即每件售價(jià)為50元時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是9 000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所得的利潤(rùn)依次為M萬(wàn)元和N萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系可由經(jīng)驗(yàn)公式給出:M=,N= (≥1).今有8萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,且乙商品至少要求投資1萬(wàn)元,

設(shè)投入乙種商品的資金為萬(wàn)元,總利潤(rùn)

2)為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形為直角梯形,,,,中點(diǎn),,交于點(diǎn),沿將四邊形折起,連接

(1)求證:平面;

(2)若平面平面

(I)求二面角的平面角的大;

(II)線段上是否存在點(diǎn),使平面,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的直觀圖和三視圖如下:

(1)求證: 底面;

(2)求三棱錐的體積;

(3)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·哈爾濱高二檢測(cè))如圖,下列四個(gè)幾何體中,它們的三視圖(正視圖、俯視圖、側(cè)視圖)有且僅有兩個(gè)相同,而另一個(gè)不同的兩個(gè)幾何體是________.

(1)棱長(zhǎng)為2的正方體    (2)底面直徑和高均為2的圓柱

(3)底面直徑和高

均為2的圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)

設(shè)橢圓的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)相同.

1)求此橢圓的方程;

2)若過(guò)此橢圓的右焦點(diǎn)的直線與曲線只有一個(gè)交點(diǎn),則

求直線的方程;

橢圓上是否存在點(diǎn),使得,若存在,請(qǐng)說(shuō)明一共有幾個(gè)點(diǎn);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,設(shè)函數(shù)

1)若函數(shù)的圖象關(guān)于直線對(duì)稱,且時(shí),求函數(shù)的單調(diào)增區(qū)間;

2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案