【題目】(本題滿分12分)甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度(在平均數(shù)、方差或標準差中選兩個)分析,你認為選派哪位學生參加合適?請說明理由
參考公式:
科目:高中數(shù)學 來源: 題型:
【題目】(2016·哈爾濱高二檢測)如圖,下列四個幾何體中,它們的三視圖(正視圖、俯視圖、側視圖)有且僅有兩個相同,而另一個不同的兩個幾何體是________.
(1)棱長為2的正方體 (2)底面直徑和高均為2的圓柱
(3)底面直徑和高
均為2的圓錐
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:
(Ⅰ)完成被調查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取2人進行追蹤調查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,,設函數(shù).
(1)若函數(shù)的圖象關于直線對稱,且時,求函數(shù)的單調增區(qū)間;
(2)在(1)的條件下,當時,函數(shù)有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內存在實數(shù),滿足,則稱為“局部奇函數(shù)”
(1)已知二次函數(shù)(且),試判斷是否為“局部奇函數(shù)”,并說明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
(3)若為定義域為上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年1月1日,作為貴陽市打造“千園之城”27個示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設置了水上挑戰(zhàn)項目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機抽取了60名男生和40名女生共100人進行調查,統(tǒng)計出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列
列聯(lián)表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關?
愿意 | 不愿意 | 總計 | |
男生 | |||
女生 | |||
總計 |
(2)水上挑戰(zhàn)項目共有兩關,主辦方規(guī)定:挑戰(zhàn)過程依次進行,每一關都有兩次機會挑戰(zhàn),通過第一關后才有資格參與第二關的挑戰(zhàn),若甲參加每一關的每一次挑戰(zhàn)通過的概率均為
,記甲通過的關數(shù)為
,求
的分布列和數(shù)學期望.
參考公式與數(shù)據(jù):
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校數(shù)學系2016年高等代數(shù)試題有6個題庫,其中3個是新題庫(即沒有用過的題庫),3個是舊題庫(即至少用過一次的題庫),每次期末考試任意選擇2個題庫里的試題考試.
(1)設2016年期末考試時選到的新題庫個數(shù)為,求的分布列和數(shù)學期望;
(2)已知2016年時用過的題庫都當作舊題庫,求2017年期末考試時恰好到1個新題庫的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;
(2)試寫出一個含3個元素的可倒數(shù)集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校隨機調查80名學生,以研究學生愛好羽毛球運動與性別的關系,得到下面的 列聯(lián)表:
愛好 | 不愛好 | 合計 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計 | 30 | 50 | 80 |
(Ⅰ)將此樣本的頻率視為總體的概率,隨機調查本校的3名學生,設這3人中愛好羽毛球運動的人數(shù)為,求的分布列和數(shù)學期望;
(Ⅱ)根據(jù)表3中數(shù)據(jù),能否認為愛好羽毛球運動與性別有關?
0.050 | 0.010 | |
| 3.841 | 6.635 |
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com