設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*,都有+…+,記Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有bn+1>bn.

(1)ann(2)存在整數(shù)λ=-1

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn¨對(duì)恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,其前n項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為q,且,.
(1)求;
(2)設(shè)數(shù)列滿足,求的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)無窮數(shù)列的首項(xiàng),前項(xiàng)和為),且點(diǎn)在直線上(為與無關(guān)的正實(shí)數(shù)).
(1)求證:數(shù)列)為等比數(shù)列;
(2)記數(shù)列的公比為,數(shù)列滿足,設(shè),求數(shù)列的前項(xiàng)和;
(3)若(2)中數(shù)列{Cn}的前n項(xiàng)和Tn當(dāng)時(shí)不等式恒成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知單調(diào)遞增的等比數(shù)列{an}滿足:
a2a3a4=28,且a3+2是a2a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)令bnanlogan,Snb1b2+…+bn,求使Snn·2n+1>50成立的最小的正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列和等比數(shù)列中,,,項(xiàng)和.
(1)若,求實(shí)數(shù)的值;
(2)是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;
(3)是否存在正實(shí)數(shù),使得數(shù)列中至少有三項(xiàng)在數(shù)列中,但中的項(xiàng)不都在數(shù)列中?若存在,求出一個(gè)可能的的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列的各項(xiàng)均為正數(shù),且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列、的每一項(xiàng)都是正數(shù),,,且、成等差數(shù)列,、、成等比數(shù)列,.
(Ⅰ)求、的值;
(Ⅱ)求數(shù)列、的通項(xiàng)公式;
(Ⅲ)證明:對(duì)一切正整數(shù),有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是公差大于零的等差數(shù)列,已知,.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案