【題目】設(shè)函數(shù),.
(1)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求a,b的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(3),求函數(shù)在區(qū)間上的最小值.
【答案】(1);(2);(3)
【解析】
(1)由題意求出由題意得,且解該方程組即可求出的值;(2)把代入化簡(jiǎn),并求出,利用導(dǎo)數(shù)求出單調(diào)性和極值,由函數(shù)在內(nèi)有兩零點(diǎn)列出不等式組,求出不等式的解集可得的取值范圍.
(3)表示出,并求出,利用導(dǎo)數(shù)求出單調(diào)性和極值點(diǎn),按照在區(qū)間內(nèi)沒有極值點(diǎn),一個(gè)極值點(diǎn),兩個(gè)極值點(diǎn)分類討論,結(jié)合圖象及函數(shù)的單調(diào)性即可求得其最小值.
(1),,
由線與曲線在它們的交點(diǎn)處具有公共切線,
,,
即,
解得.
(2),
,
,
令,得,,
極小值 |
在內(nèi)恰有2個(gè)零點(diǎn),
,即,
解得,
因此a的取值范圍是.
(3)
令,解得,
0 | 0 | ||||
極大值 | 極小值 |
①當(dāng),即時(shí),,
在和單調(diào)遞增,
在上單調(diào)遞減,
,
,
當(dāng)時(shí),,,
當(dāng)時(shí),,.
②,即,
在上單調(diào)遞減,
.
③,即,
在上單調(diào)遞減,
在單調(diào)遞增,
.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線ax+by=1與圓x2+y2=1相交于A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值為( ).
A.0B.C.-1D.+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)根據(jù)學(xué)生的興趣愛好,分別創(chuàng)建了“書法”、“詩詞”、“理學(xué)”三個(gè)社團(tuán),據(jù)資料統(tǒng)計(jì)新生通過考核選拔進(jìn)入這三個(gè)社團(tuán)成功與否相互獨(dú)立.2015年某新生入學(xué),假設(shè)他通過考核選拔進(jìn)入該校的“書法”、“詩詞”、“理學(xué)”三個(gè)社團(tuán)的概率依次為、、,己知三個(gè)社團(tuán)他都能進(jìn)入的概率為,至少進(jìn)入一個(gè)社團(tuán)的概率為,且.
(1)求與的值;
(2)該校根據(jù)三個(gè)社團(tuán)活動(dòng)安排情況,對(duì)進(jìn)入“書法”社的同學(xué)增加校本選修學(xué)分1分,對(duì)進(jìn)入“詩詞”社的同學(xué)增加校本選修學(xué)分2分,對(duì)進(jìn)入“理學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團(tuán)方面獲得校本選修課學(xué)分分?jǐn)?shù)不低于4分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),有下列說法:
①函數(shù)對(duì)任意,都有成立;
②函數(shù)在上單調(diào)遞減;
③函數(shù)在上有3個(gè)零點(diǎn);
④若函數(shù)的值域?yàn)?/span>,設(shè)是中所有有理數(shù)的集合,若簡(jiǎn)分?jǐn)?shù)(其中,為互質(zhì)的整數(shù)),定義函數(shù),則在中根的個(gè)數(shù)為5;
其中正確的序號(hào)是______(填寫所有正確結(jié)論的番號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)既有極大值又有極小值,試求實(shí)數(shù)的取值范圍;
(2)設(shè),且,是函數(shù)的兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷費(fèi)用為萬元時(shí),銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為萬元/萬件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式。孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問題之一,可以這樣描述:存在無窮多個(gè)素?cái)?shù)p,使得p+2是素?cái)?shù),素?cái)?shù)對(duì)(p,p+2)稱為孿生素?cái)?shù).在不超過30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點(diǎn)在上的射影為點(diǎn),且, , .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com