函數(shù)y=f(x)的定義域?yàn)閇-1,0)∪(0,1]其圖像上任一點(diǎn)P(x,y)滿(mǎn)足x2+y2=1

①函數(shù)y=f(x)一定是偶函數(shù);

②函數(shù)y=f(x)可以是奇函數(shù);

③函數(shù)y=f(x)可能既不是偶函數(shù),也不是奇函數(shù);

④函數(shù)y=f(x)如果是偶函數(shù),則值域是[0,1)或(-1,0];

其中正確命題的序號(hào)是________(填上所有正確的序號(hào))

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)各省市高考模擬試題匯編 題型:044

已知:如圖射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動(dòng)點(diǎn)P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.

(Ⅰ)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是其橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;

(Ⅱ)根據(jù)k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省白鷺洲中學(xué)2009-2010學(xué)年高一下學(xué)期第一次月考數(shù)學(xué)試題 題型:044

某服裝批發(fā)商場(chǎng)經(jīng)營(yíng)的某種服裝,進(jìn)貨成本40元/件,對(duì)外批發(fā)價(jià)定為60元/件.該商場(chǎng)為了鼓勵(lì)購(gòu)買(mǎi)者大批量購(gòu)買(mǎi),推出優(yōu)惠政策:一次購(gòu)買(mǎi)不超過(guò)50件時(shí),只享受批發(fā)價(jià);一次購(gòu)買(mǎi)超過(guò)50件時(shí),每購(gòu)買(mǎi)1件,購(gòu)買(mǎi)者所購(gòu)買(mǎi)的所有服裝可在享受批發(fā)價(jià)的基礎(chǔ)上,再降低0.1元/件,但最低價(jià)不低于50元/件.

(1)問(wèn)一次購(gòu)買(mǎi)多少件時(shí),售價(jià)恰好是50元/件?

(2)設(shè)購(gòu)買(mǎi)者一次購(gòu)買(mǎi)x件,商場(chǎng)的利潤(rùn)為y元(利潤(rùn)=銷(xiāo)售總額-成本),試寫(xiě)出函數(shù)y=f(x)的表達(dá)式.并說(shuō)明在售價(jià)高于50元/件時(shí),購(gòu)買(mǎi)者一次購(gòu)買(mǎi)多少件,商場(chǎng)利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(寧夏、海南卷)、數(shù)學(xué)(理科)解析 題型:044

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.

(Ⅰ)求y=f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱(chēng)圖形,并求其對(duì)稱(chēng)中心;

(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市某中學(xué)2012屆高三9月月考數(shù)學(xué)試題 題型:044

為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車(chē)出租.該景區(qū)有50輛自行車(chē)供游客租賃使用,管理這些自行車(chē)的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車(chē)的日租金不超過(guò)6元,則自行車(chē)可以全部租出;若超出6元,則每超過(guò)1元,租不出的自行車(chē)就增加3輛.為了便于結(jié)算,每輛自行車(chē)的日租金x(元)只取整數(shù),并且要求出租自行車(chē)一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車(chē)的日凈收入(即一日中出租自行車(chē)的總收入減去管理費(fèi)用后的所得).

(1)求函數(shù)y=f(x)的解析式及其定義域;

(2)試問(wèn)當(dāng)每輛自行車(chē)的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試寧夏卷數(shù)學(xué)理科 題型:044

設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(0,f(2))處的切線方程為y=3.

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱(chēng)圖形,并求其對(duì)稱(chēng)中心;

(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線yx所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案