【題目】方程的曲線即為函數(shù)的圖象,對(duì)于函數(shù),有如下結(jié)論:上單調(diào)遞減;函數(shù)存在零點(diǎn);函數(shù)的值域是R若函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)的圖象就是確定的曲線

其中所有正確的命題序號(hào)是________.

【答案】①③

【解析】

根據(jù)絕對(duì)值的定義去絕對(duì)值,將方程化簡(jiǎn),得到相應(yīng)函數(shù)在各區(qū)間上的表達(dá)式,由此作出圖象,即可即可判斷各命題的真假.

當(dāng)時(shí),方程為,此時(shí)方程不成立;

當(dāng)時(shí),方程為,即,

當(dāng)時(shí),方程為,即,

當(dāng)時(shí),方程為,即

作出函數(shù)的圖象,如圖所示:

對(duì)于,由圖可知,函數(shù)在上單調(diào)遞減,所以正確;

對(duì)于,由得,,因?yàn)殡p曲線的漸近線為,所以函數(shù)的圖象與直線無(wú)公共點(diǎn),因此,函數(shù)不存在零點(diǎn),所以②錯(cuò)誤;

對(duì)于,由圖可知,函數(shù)的值域是R,所以正確;

對(duì)于④,若函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,則用分別替換可得,

,則函數(shù)的圖象是確定的曲線,而不是確定的曲線,所以④錯(cuò)誤.

綜上,正確的為①③.

故答案為:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)時(shí),我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差.某高二班主任為了了解學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與歷史偏差(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班52位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:

學(xué)生序號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差

20

15

13

3

2

歷史偏差

1)已知之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程

2)若這次考試該班數(shù)學(xué)平均分為118分,歷史平均分為,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的歷史成績(jī).

附:參考公式與參考數(shù)據(jù)

,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐SABC中,,OBC的中點(diǎn).

1)求證:ABC;

2)求異面直線AB所成角的余弦值;

3)在線段上是否存在一點(diǎn),使二面角的平面角的余弦值為;若存在,求的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定直線的距離比到定點(diǎn)的距離大2.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)在軸正半軸上,是否存在某個(gè)確定的點(diǎn),過(guò)該點(diǎn)的動(dòng)直線與曲線交于兩點(diǎn),使得為定值.如果存在,求出點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離.

(1)求拋物線的方程;

(2)過(guò)點(diǎn)引圓的兩條切線,切線與拋物線的另一交點(diǎn)分別為,線段中點(diǎn)的橫坐標(biāo)記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓)的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知

1)求橢圓的離心率;

2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)原點(diǎn)的直線與該圓相切,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過(guò)點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),直線與橢圓交于兩個(gè)相異點(diǎn),證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等高的正三棱錐P-ABC與圓錐SO的底面都在平面M上,且圓O過(guò)點(diǎn)A,又圓O的直徑ADBC,垂足為E,設(shè)圓錐SO的底面半徑為1,圓錐體積為

(1)求圓錐的側(cè)面積;

(2)求異面直線ABSD所成角的大;

(3)若平行于平面M的一個(gè)平面N截得三棱錐與圓錐的截面面積之比為,求三棱錐的側(cè)棱PA與底面ABC所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時(shí),證明:;

(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案