【題目】在平面直角坐標(biāo)系中,已知圓,點(diǎn),,點(diǎn)在圓上,.

1)求圓的方程;

2)直線與圓交于,兩點(diǎn)(點(diǎn)在軸上方),點(diǎn)是拋物線上的動(dòng)點(diǎn),點(diǎn)的外心,求線段長(zhǎng)度的最大值,并求出當(dāng)線段長(zhǎng)度最大時(shí),外接圓的標(biāo)準(zhǔn)方程.

【答案】12的最大值為;

【解析】

1)設(shè),根據(jù)得到,轉(zhuǎn)化為坐標(biāo)表示,得到,即,從而得到圓的方程;

2)由得到、的坐標(biāo),表示出線段的中垂線,令,得到的外心的坐標(biāo),由在拋物線上得,從而得到,再由基本不等式,得到其最大值,確定出點(diǎn)坐標(biāo),再求出外接圓的半徑,得到所求圓的方程.

解:(1)設(shè),則,

因?yàn)?/span>,所以

所以,

由上式得:,所以,所以圓的方程為.

2)把代入圓的方程得,所以,

作出線段的中垂線,則的外心為直線軸的交點(diǎn).

直線的方程為:.

當(dāng)時(shí),.

因?yàn)辄c(diǎn)在拋物線上,所以

所以.

所以,

.

當(dāng)且僅當(dāng)時(shí),即時(shí)取到最大值.

此時(shí)點(diǎn)坐標(biāo)為,所以外接圓的半徑,

所以外接圓的標(biāo)準(zhǔn)方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EA平面ABC,DCEA,EA2DCFEB的中點(diǎn).

1)求證:DC平面ABC;

2)求證:DF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)學(xué)生的環(huán)境意識(shí),某中學(xué)隨機(jī)抽取了50名學(xué)生舉行了一次環(huán)保知識(shí)競(jìng)賽,本次競(jìng)賽的成績(jī)(得分均為整數(shù),滿分100分)整理,制成下表:

成績(jī)

頻數(shù)

2

3

14

15

14

4

1)作出被抽查學(xué)生成績(jī)的頻率分布直方圖;

2)若從成績(jī)?cè)?/span>中選一名學(xué)生,從成績(jī)?cè)?/span>中選出2名學(xué)生,共3名學(xué)生召開(kāi)座談會(huì),求組中學(xué)生組中學(xué)生同時(shí)被選中的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市實(shí)驗(yàn)中學(xué)數(shù)學(xué)教研組,在高三理科一班進(jìn)行了一次“采用兩種不同方式進(jìn)行答卷”的考試實(shí)驗(yàn),第一種做卷方式:按從前往后的順序依次做;第二種做卷方式:先做簡(jiǎn)單題,再做難題.為了比較這兩種做卷方式的效率,選取了名學(xué)生,將他們隨機(jī)分成兩組,每組.第一組學(xué)生用第一種方式,第二組學(xué)生用第二種方式,根據(jù)學(xué)生的考試分?jǐn)?shù)(單位:分)繪制了莖葉圖如圖所示.

分(含分)以上為優(yōu)秀,根據(jù)莖葉圖估計(jì)兩種做卷方式的優(yōu)秀率;

設(shè)名學(xué)生考試分?jǐn)?shù)的中位數(shù)為,根據(jù)莖葉圖填寫(xiě)下面的列聯(lián)表:

超過(guò)中位數(shù)的人數(shù)

不超過(guò)中位數(shù)的人數(shù)

合計(jì)

第一種做卷方式

第一種做卷方式

合計(jì)

根據(jù)列聯(lián)表,能否有的把握認(rèn)為兩種做卷方式的效率有差異?

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形ABCD是矩形,平面平面ABCD,ESB的中點(diǎn),MCD上任意一點(diǎn).

1)求證:

2)若,,平面SAD,求直線BM與平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB4,C是底面圓O上一點(diǎn),且AC2,點(diǎn)D為半徑OB的中點(diǎn),連接PD.

1)求證:PC在平面APB內(nèi)的射影是PD;

2)若PA4,求底面圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)響應(yīng)“綠水青山就是金山銀山”的號(hào)召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹(shù)的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足如下關(guān)系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費(fèi))元.已知這種水果的市場(chǎng)售價(jià)大約為15元/千克,且銷路暢通供不應(yīng)求.記該水果樹(shù)的單株利潤(rùn)為(單位:元).

(Ⅰ)求的函數(shù)關(guān)系式;

(Ⅱ)當(dāng)施用肥料為多少千克時(shí),該水果樹(shù)的單株利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),對(duì)于函數(shù)有下述四個(gè)結(jié)論:

①函數(shù)在其定義域上為增函數(shù);

②對(duì)于任意的,都有成立;

有且僅有兩個(gè)零點(diǎn);

④若在點(diǎn)處的切線也是的切線,則必是零點(diǎn).

其中所有正確的結(jié)論序號(hào)是(

A.①②③B.①②C.②③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若只有個(gè)正整數(shù)解,求的取值范圍;

(2)①求證:方程有唯一實(shí)根,且

②求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案