【題目】“雙11”促銷活動中,某商場為了吸引顧客,搞好促銷活動,采用“雙色球”定折扣的方式促銷,即:在紅、黃的兩個(gè)紙箱中分別裝有大小完全相同的紅、黃球各5個(gè),每種顏色的5個(gè)球上標(biāo)有1,2,3,4,5等5個(gè)數(shù)字,顧客結(jié)賬時(shí),先分別從紅、黃的兩個(gè)紙箱中各取一球,按兩個(gè)球的數(shù)字之和為折扣打折,如,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是( 。
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的邊長AB=3,側(cè)棱AA1=2,E是棱CC1的中點(diǎn),點(diǎn)F滿足 =2.
(1)求異面直線FE和DB1所成角的余弦值;
(2)記二面角E-B1F-A的大小為θ,求|cosθ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于或等于2,則稱這個(gè)數(shù)列為“D數(shù)列”.
(1)若首項(xiàng)為1的等差數(shù)列的每一項(xiàng)均為正整數(shù),且數(shù)列為“D數(shù)列”,其前n項(xiàng)和滿足(),求數(shù)列的通項(xiàng)公式;
(2)已知等比數(shù)列的每一項(xiàng)均為正整數(shù),且數(shù)列為“D數(shù)列”,,設(shè)(),試判斷數(shù)列是否為“D數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點(diǎn).
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱中,為的中點(diǎn),點(diǎn)在側(cè)棱上,平面
(1) 證明:是的中點(diǎn);
(2) 設(shè),四邊形為邊長為4正方形,四邊形為矩形,且異面直線與所成的角為,求該三棱柱的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】淮北市第一次模擬考試?yán)砜乒部颊Z文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科,安排在某兩日的四個(gè)半天考完,每個(gè)半天考一科或兩科.若語文、數(shù)學(xué)、物理三科中任何兩科不能排在同一個(gè)半天,則此次考試不同安排方案的種數(shù)有( )(同一半天如果有兩科考試不計(jì)順序)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性,并證明有且僅有兩個(gè)零點(diǎn);
(Ⅱ)設(shè)是的一個(gè)零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點(diǎn)和橢圓:的焦點(diǎn)且方向向量為,且橢圓的中心關(guān)于直線的對稱點(diǎn)在直線上.
(1)求橢圓的方程;
(2)是否存在過點(diǎn)的直線交橢圓于點(diǎn)、,且滿足(為原點(diǎn))?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿直線翻折成,連結(jié),為的中點(diǎn),則在翻折過程中,下列說法中所有正確的是( )
A.存在某個(gè)位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com