【題目】已知函數(shù),(,).
(1)當時,求函數(shù)的極小值點;
(2)當時,若對一切恒成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題(1)當時,,則.
討論,兩種情況,研究單調性得極小值(2) (2)當時,可化為,即,令,則.當時,對于一切,有,,
所以恒成立.當時,符合題意;當時,存在,使得,在上單調遞減,從而有:時,,不符合題意,即得的取值范圍
試題解析:
(1)當時,,則.
當時,,所以在上單調遞增,故無極值點;
當時,由 ,得,
當時,,所以在上單調遞減;
當時,,所以在上單調遞增.
所以的極小值點為.
(2)當時,可化為,即,
令,則.
當時,對于一切,有,,
所以恒成立.
下面考慮時的情況.
當時,對于一切,有,,所以恒成立,
所以在上是增函數(shù),所以,符合題意;
當時,,,由零點存在性定理可知,一定存在,使得,且當時,,所以在上單調遞減,從而有:時,,不符合題意.
綜上可知,的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】某公司有一批專業(yè)技術人員,對他們進行年齡狀況和接受教育程度(學歷)的調查,其結果(人數(shù)分布)如表:
(1)用分層抽樣的方法在歲年齡段的專業(yè)技術人員中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的學歷為研究生的概率;
(2)在這個公司的專業(yè)技術人員中按年齡狀況用分層抽樣的方法抽取個人,其中歲以下人,歲以上人,再從這個人中隨機抽取出人,此人的年齡為歲以上的概率為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了教職工的住房問題,計劃征用一塊土地蓋一幢總建筑面積為的宿舍樓(每層的建筑面積相同).已知土地的征用費為元,土地的征用面積為第一層的倍,經工程技術人員核算,第一層的建筑費用相同都為400元,以后每增高一層,其建筑費用就增加50元.試設計這幢宿舍樓的樓高層數(shù),使總費用最少,并求出其最少費用.(總費用為建筑費用和征地費用之和).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣2y+1=0和拋物線E:y2=2px(p>0),圓C與拋物線E的準線交于M、N兩點,△MNF的面積為p,其中F是E的焦點.
(1)求拋物線E的方程;
(2)不過原點O的動直線l交該拋物線于A,B兩點,且滿足OA⊥OB,設點Q為圓C上任意一動點,求當動點Q到直線l的距離最大時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種子公司對一種新品種的種子的發(fā)芽多少與晝夜溫差之間的關系進行分析研究,以便選擇最合適的種植條件.他們分別記錄了10塊試驗地每天的晝夜溫差和每塊實驗地里50顆種子的發(fā)芽數(shù),得到如下資料:
(1)從上述十組試驗數(shù)據來看,是否可以判斷晝夜溫差與發(fā)芽數(shù)之間具有相關關系?是否具有線性相關關系?
(2)若在一定溫度范圍內,晝夜溫差與發(fā)芽數(shù)近似滿足相關關系:(其中).取后五組數(shù)據,利用最小二乘法求出線性回歸方程(精確到0.01);
(3)利用(2)的結論,若發(fā)芽數(shù)試驗值與預測值差的絕對值不超過3個就認為正常,否則認為不正常.從上述十組試驗中任取三組,至少有兩組正常的概率是多少?
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家擬在新年舉行大型的促銷活動,經測算某產品當促銷費用為萬元時,銷售量萬件滿足(其中,為正常數(shù)).現(xiàn)假定生產量與銷售量相等,已知生產該產品萬件還需投入成本萬元(不含促銷費用),產品的銷售價格定為萬元/萬件.
(1)將該產品的利潤萬元表示為促銷費用萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項,則也是數(shù)列 中的一項,稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項數(shù)是,所有項之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對于一個不小于3項,且各項皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,,,數(shù)列滿足.
(1)證明是等差數(shù)列,并求的通項公式;
(2)設數(shù)列滿足,,記表示不超過x的最大整數(shù),求關于n的不等式的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當a=1時,求函數(shù)的單調區(qū)間:
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若函數(shù)有兩個不同的零點,求a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com