【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為
(1)求及基地的預(yù)期收益;
(2)若該基地額外聘請工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應(yīng)該額外聘請工人,請說明理由.
【答案】(1) 基地的預(yù)期收益為9.16萬元;(2)見解析.
【解析】試題分析:
(1)由于兩天下雨是相互獨立的,因此兩天都下雨的概率是,由此可得;該基地收益的可能取值為10,8, 5(單位:萬元),分別計算要概率,然后列出概率分布列,計算出數(shù)學(xué)期望.(2)該基地額外聘請工人的預(yù)期收益絕對值計算易得,現(xiàn)第(1)小題,比較兩個預(yù)期值可得.
試題解析:
(1) 兩天都下雨的概率為,解得.
該基地收益的可能取值為10,8, 5。(單位:萬元)則:
, ,
所以該基地收益的分布列為:
10 | 8 | 5 | |
0.64 | 0.32 | 0.04 |
則該基地的預(yù)期收益(萬元)
所以,基地的預(yù)期收益為9.16萬元
⑵設(shè)基地額外聘請工人時的收益為萬元,則其預(yù)期收益:
(萬元)
此時,所以該基地應(yīng)該外聘工人.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), , .
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)若函數(shù)有兩個零點,試求的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°.側(cè)面PAD為正三角形,且平面PAD⊥平面ABCD,則下列說法錯誤的是( 。
A.在棱AD上存在點M,使AD⊥平面PMB
B.異面直線AD與PB所成的角為90°
C.二面角P﹣BC﹣A的大小為45°
D.BD⊥平面PAC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是將一正方體貨物沿坡面AB裝進汽車貨廂的平面示意圖.已知長方體貨廂的高度BC為 米,tanA= ,現(xiàn)把圖中的貨物繼續(xù)往前平移,當(dāng)貨物頂點D與C重合時,仍可把貨物放平裝進貨廂,求BD的長.(結(jié)果保留根號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一枚質(zhì)地均勻且四個面上分別標(biāo)有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)字為.用表示一個基本事件.
請寫出所有基本事件;
求滿足條件“”為整數(shù)的事件的概率;
求滿足條件“”的事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與圓交于M、N兩點,且M、N關(guān)于直線對稱.
(1)求m,k的值;
(2)若直線與圓C交P,Q兩點,是否存在實數(shù)a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對應(yīng)值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表格中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com