(坐標系與參數(shù)方程選做題)
已知曲線C的極坐標方程是ρ=6sinθ,以極點為坐標原點,極軸為x的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是
x=
2
t-1
y=
2
2
t
(t
為參數(shù)),則直線l與曲線C相交所得的弦的弦長為
 
分析:由已知中曲線C的極坐標方程是ρ=6sinθ,以極點為坐標原點,極軸為x的正半軸,我們易求出圓的標準方程,由直線l的參數(shù)方程是
x=
2
t-1
y=
2
2
t
,我們可以求出直線的一般方程,代入點到直線距離公式,易求出弦心距,然后根據(jù)弦心距,圓半徑,半弦長構(gòu)成直角三角形,滿足勾股定理,可得答案.
解答:解:曲線C在直角坐標系下的方程為:x2+y2=6y,
故圓心為(0,3),半徑為3.
直線l在直角坐標系下的方程為:x-2y+1=0,
圓心距為d=
|0-2×3+1|
12+(-2)2
=
5

所以MN=2
r2-d2
=4

故答案為:4
點評:本題考查的知識點是直線的參數(shù)方程,直線與圓相交的性質(zhì),簡單曲線的極坐標方程,其中分別將圓的極坐標方程和直線的參數(shù)方程化為圓的標準方程和直線的一般方程是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標系與參數(shù)方程選做題)以原點為極點,x軸的正半軸為極軸,單位長度一致的坐標系下,已知曲線C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線C2的極坐標方程為ρsinθ=a,則這兩曲線相切時實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標系與參數(shù)方程選做題)在極坐標系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標為
2
π
4
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標系與參數(shù)方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點M的極坐標為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(坐標系與參數(shù)方程選做題)已知在極坐標系下,點A(1,
π
3
),B(3,
3
),O是極點,則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標系與參數(shù)方程選做題)在極坐標系中,已知點P(2,
π3
),則過點P且平行于極軸的直線的極坐標方程為
 

查看答案和解析>>

同步練習冊答案