【題目】已知直線,和兩點(diǎn),給出如下結(jié)論其中真命題的序號(hào)是________
①當(dāng)變化時(shí),與分別經(jīng)過定點(diǎn)和;
②不論為何值時(shí),與都互相垂直;
③如果與交于點(diǎn),則的最大值是2;
④為直線上的點(diǎn),則的最小值是.
【答案】①②④
【解析】
根據(jù)直線方程的形式可以得到它們各自經(jīng)過的定點(diǎn)以及兩條直線是相互垂直的,故可判斷①②正確,又可判斷在一個(gè)定圓上,從而可求的最大值為,故③錯(cuò)誤,求出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)后可求的最小值,從而可判斷④正確與否.
因?yàn)橹本的方程為即,故該直線過,
同理直線過,所以當(dāng)變化時(shí),與分別經(jīng)過定點(diǎn)和,①正確.
因?yàn)?/span>,故直線與垂直,故②正確.
因?yàn)橹本與垂直,故,
所以,
根據(jù)基本不等式有,故,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故③錯(cuò)誤.
設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,則,故,
所以,
當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立,故④正確.
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)時(shí),解關(guān)于x的不等式;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在冪函數(shù)的圖像上.
(1)求的表達(dá)式;
(2)設(shè),求函數(shù)的零點(diǎn),推出函數(shù)的另外一個(gè)性質(zhì)(只要求寫出結(jié)果,不要求證明),并畫出函數(shù)的簡(jiǎn)圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓上一點(diǎn),分別為關(guān)于軸,原點(diǎn),軸的對(duì)稱點(diǎn),
(1)求四邊形面積的最大值;
(2)當(dāng)四邊形最大時(shí),在線段上任取一點(diǎn),若過的直線與橢圓相交于兩點(diǎn),且中點(diǎn)恰為,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設(shè)O為原點(diǎn),,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程;
(2)求經(jīng)過直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點(diǎn),且平行于直線x+2y-3=0的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀情況,現(xiàn)采用分層隨機(jī)抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們的課外閱讀時(shí)間,然后按初中學(xué)生和高中學(xué)生分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:h)分為5組:,,,,,并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30h的學(xué)生人數(shù)為_______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com