【題目】已知函數(shù).
(1)時(shí),解關(guān)于x的不等式;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.
【答案】(1);(2).
【解析】
(1)化簡(jiǎn)不等式,分類討論去掉絕對(duì)值,即可求解,得到答案.
(2)f(x)≤0恒成立時(shí),x29a|x3|≥0恒成立,可分x=3、x>3和x<3時(shí),三種情況討論,即可求解,得到答案.
(1)由題意,當(dāng)a=2時(shí),不等式x2+2|x3|+9≥0,
當(dāng)x≥3時(shí),(x3)(x+1)≤0,解得1≤x≤3,即x=3;
當(dāng)x<3時(shí),不等式可化為(x3)(x+5)≤0,解得5≤x≤3,即5≤x<3;
綜上所述,不等式的解集為[5,3].
(2)由f(x)≤0恒成立時(shí),即x29a|x3|≥0恒成立,
①當(dāng)x=3時(shí),不等式恒成立,∴a∈R;
②當(dāng)x>3時(shí),不等式(x3)(x+3a)≥0恒成立,∴x+3a≥0恒成立,∴a≤6;
③當(dāng)x<3時(shí),不等式(x3)(x+3+a)≥0恒成立,∴x+3+a≤0恒成立,∴a≤6;
綜上所述,a的取值范圍是(-∞,6].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)平面上有兩點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),求的最小值;
(3)若是軸上的動(dòng)點(diǎn),分別切圓于兩點(diǎn),試問:直線是否恒過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)為所在的平面內(nèi),給出下列關(guān)系式:
①;
②;
③.
則點(diǎn)依次為的( )
A.內(nèi)心、重心、垂心B.重心、內(nèi)心、垂心C.重心、內(nèi)心、外心D.外心、垂心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長(zhǎng)交橢圓于點(diǎn),的周長(zhǎng)為8.
(1)求的離心率及方程;
(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式的解集中的整數(shù)解恰好有三個(gè),則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,前n項(xiàng)和為,對(duì)任意的正整數(shù)n,都有恒成立.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知關(guān)于n的不等式…對(duì)一切恒成立,求實(shí)數(shù)a的取值范圍;
(3)已知 ,數(shù)列的前n項(xiàng)和為,試比較與的大小并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.
(3)估計(jì)居民月用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,和兩點(diǎn),給出如下結(jié)論其中真命題的序號(hào)是________
①當(dāng)變化時(shí),與分別經(jīng)過定點(diǎn)和;
②不論為何值時(shí),與都互相垂直;
③如果與交于點(diǎn),則的最大值是2;
④為直線上的點(diǎn),則的最小值是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程
(1)若,是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率.
(2)若,,求方程沒有實(shí)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com