【題目】已知圓經(jīng)過(guò),兩點(diǎn),且圓心在直線上.
(1)求圓的方程
(2)從原點(diǎn)向圓作切線,求切線方程及切線長(zhǎng).
【答案】(1) (或?qū)懗?/span>:);(2),.
【解析】
(1) 解法一: 設(shè)圓的方程為,將,兩點(diǎn)代入得: ,根據(jù)圓的一般方程的圓心為: ,代入,
聯(lián)立方程即可求出答案.
解法二:設(shè)根據(jù)題意,分析可得圓的圓心是線段的垂直平分線與直線的交點(diǎn),先求出線段的垂直平分線的方程,與直線聯(lián)立可得圓的圓心的坐標(biāo),在由兩點(diǎn)間距離公式: ,代入圓的標(biāo)準(zhǔn)方程: 即可得出答案.
(2) 解法一:過(guò)原點(diǎn)的直線中,當(dāng)斜率不存在時(shí),不與圓相切,當(dāng)斜率存在時(shí),可設(shè)直線方程為:,直線圓線切,聯(lián)立方程: 將其化為關(guān)于的一元二次方程,由題意可知此方程的,解得 ,即可求出切線方程及切線長(zhǎng).
解法二: 過(guò)原點(diǎn)的直線中,當(dāng)斜率不存在時(shí),不與圓相切,當(dāng)斜率存在時(shí),可設(shè)直線方程為:.因?yàn)橹本與圓相切,故圓心到直線的距離等于半徑,根據(jù)點(diǎn)到直線的距離公式: 可求得圓的圓心到:的距離為1,可解得 ,即可求出切線方程及切線長(zhǎng).
(1)解法一:設(shè)圓的方程為
由題意: ①
②
又圓心在直線上
故 , ③
由①②③解得:,,,
圓的方程為:(或?qū)懗?/span>:),
解法二:由題意,圓心在的中垂線上,
又在已知直線上,
解得圓心坐標(biāo)為,
于是半徑
所求圓的方程為:;
(2)解法一:過(guò)原點(diǎn)的直線中,當(dāng)斜率不存在時(shí),不與圓相切
當(dāng)斜率存在時(shí),設(shè)直線方程為
代入得
即
令,
解得,
即切線方程為.
對(duì)應(yīng)切線長(zhǎng)為.
解法二:過(guò)原點(diǎn)的直線中,當(dāng)斜率不存在時(shí),不與圓相切;
當(dāng)斜率存在時(shí),設(shè)直線方程為,
因?yàn)橹本與圓相切,故圓心到直線的距離等于半徑,
根據(jù)點(diǎn)到直線的距離公式:可得
解得.即切線方程為.
對(duì)應(yīng)切線長(zhǎng)為.
綜上所述: 切線方程為,切線長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}各項(xiàng)均不相同,a1=1,定義,其中n,k∈N*.
(1)若,求;
(2)若bn+1(k)=2bn(k)對(duì)均成立,數(shù)列{an}的前n項(xiàng)和為Sn.
(i)求數(shù)列{an}的通項(xiàng)公式;
(ii)若k,t∈N*,且S1,Sk-S1,St-Sk成等比數(shù)列,求k和t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)過(guò)點(diǎn)(e是自然對(duì)數(shù)的底數(shù))作函數(shù)圖象的切線l,求直線l的方程;
(2)求函數(shù)在區(qū)間()上的最大值;
(3)若,且對(duì)任意恒成立,求k的最大值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足:a1=1,,記.
(1)求b1,b2的值;
(2)證明:數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 命題“若,則”的逆命題是真命題
B. 命題“存在”的否定是:“任意”
C. 命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D. 已知,則“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對(duì)于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點(diǎn),F是DC上的點(diǎn)且DF=AB,PH為△PAD邊上的高.
(1)證明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱錐E-BCF的體積;
(3)證明:EF⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,底面為直角梯形,,分別為中點(diǎn),且,.
(1)平面;
(2)若為線段上一點(diǎn),且平面,求的值;
(3)求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com