【題目】2006 8 月中旬 , 湖南省資興市遇到了百年不遇的洪水災(zāi)害 . 在資興市的東江湖岸邊的點(diǎn) O (可視湖岸為直線(xiàn)) 停放著一只救人的小船,由于纜繩突然斷開(kāi),小船被風(fēng)刮跑,其方向與湖岸成 15°,, 速度為2.5 km/ h ,同時(shí),岸上有一人從同一地點(diǎn)開(kāi)始追趕小船 .已知他在岸上追的速度為4 km/ h ,在水中游的速度為 2 km/h .問(wèn)此人能否追上小船? 若小船速度改變 ,則小船能被此人追上的最大速度是多少 ?

【答案】答案見(jiàn)解析.

【解析】

如圖所示,設(shè)此人在岸上跑到點(diǎn)后下水, 在點(diǎn)處追上小船.設(shè)船速為,人追上船的時(shí)間為, 人在岸上追船的時(shí)間為(), 則人在水中游的時(shí)間為.

,.

由余弦定理得.

整理得.

設(shè).

易知.

(1)若,則必存在,使得.

此時(shí),,解得.

(2)若,要使內(nèi)有解,

解得

.

綜上,當(dāng)時(shí),人可以追上船.

因此,船速為25km/h時(shí),能追上小船,小船能被人追上的最大速度是km/h.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)試討論函數(shù)的單調(diào)性;

(2),且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,,的中點(diǎn).

(1)證明:平面;

(2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有教師400人,對(duì)他們進(jìn)行年齡狀況和學(xué)歷的調(diào)查,其結(jié)果如下:

學(xué)歷

35歲以下

35-55

55歲及以上

本科

60

40

碩士

80

40

(1)若隨機(jī)抽取一人,年齡是35歲以下的概率為,求;

(2)在35-55歲年齡段的教師中,按學(xué)歷狀況用分層抽樣的方法,抽取一個(gè)樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學(xué)歷為本科的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】孝感市旅游局為了了解雙峰山景點(diǎn)在大眾中的熟知度,從年齡在1565歲的人群中隨機(jī)抽取n人進(jìn)行問(wèn)卷調(diào)查,把這n人按年齡分成5組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的樣本的頻率分布直方圖如右:

調(diào)查問(wèn)題是“雙峰山國(guó)家森林公園是幾A級(jí)旅游景點(diǎn)?”每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計(jì)結(jié)果如下表.

組號(hào)

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

1

[15,25)

5

0.5

2

[25,35)

18

x

3

[35,45)

y

0.9

4

[45,55)

9

a

5

[55,65]

7

b

(1)分別求出n,xy的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;

(3)(2)抽取的6人中隨機(jī)抽取2人,求所抽取的兩人來(lái)自不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一走廊拐角處的橫截面如圖所示,已知內(nèi)壁和外壁都是半徑為1m的四分之一圓弧,分別與圓弧相切于兩點(diǎn),且兩組平行墻壁間的走廊寬度都是1m.

1若水平放置的木棒的兩個(gè)端點(diǎn)分別在外壁,且木棒與內(nèi)壁圓弧相切于點(diǎn)設(shè)試用表示木棒的長(zhǎng)度

2若一根水平放置的木棒能通過(guò)該走廊拐角處求木棒長(zhǎng)度的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若四位數(shù)的各位數(shù)碼中,任三個(gè)數(shù)碼皆可構(gòu)成一個(gè)三角形的三條邊長(zhǎng),則稱(chēng)n四位三角形數(shù)”.試求所有四位三角形數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(2,

(1)求橢圓C的直角坐標(biāo)方程和點(diǎn)A在直角坐標(biāo)系下的坐標(biāo)

(2)直線(xiàn)l與橢圓C交于P,Q兩點(diǎn),求△APQ的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l過(guò)點(diǎn)A(-1,0)且與⊙B:相切于點(diǎn)D,以坐標(biāo)軸為對(duì)稱(chēng)軸的雙曲線(xiàn)E過(guò)點(diǎn)D,一條漸近線(xiàn)平行于l,則E的離心率為( )

A. B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案