已知函數(shù),其中
(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值,先函數(shù)的定義域,與極值有關(guān),可通過(guò)求導(dǎo)解決.對(duì)求導(dǎo),由題意可知,可求出的值;(Ⅱ)若對(duì)任意的都有成立,即上的最小值大于或等于上的最大值,從而轉(zhuǎn)化為分別求函數(shù)的最小值、最大值,由它們的最值,從而確定出實(shí)數(shù)的取值范圍.
試題解析:(I)解法1:∵h(yuǎn)(x)=2x++lnx,其定義域?yàn)?0,+∞), (1分)
∴h'`(x)=2--         (3分)
∵x=1是函數(shù)h(x)的極值點(diǎn),∴h'(1)=0,即3-a2=0.∵a>0,∴a=
經(jīng)檢驗(yàn)當(dāng)a=時(shí),x=1是函數(shù)h(x)的極值點(diǎn),∴a=.       (5分)
解法2:∵h(yuǎn)(x)=2x++lnx,其定義域?yàn)?0,+∞),
∴h'`(x)=2--.  令h`(x)=0,即2--=0,整理,得2x2+x-a=0.
∵D=1+8a2>0,
∴h`(x)=0的兩個(gè)實(shí)根x1=(舍去),x2=
當(dāng)變化時(shí),h(x),h`(x)的變化情況如下表:

x
(0,x2)

(x2,+∞)
h`(x)
-
0
+
h(x)

極小值

依題意,=1,即a2=3,∵a>0,∴a=
(Ⅱ)對(duì)任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等價(jià)于對(duì)任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max
(6分)
當(dāng)x∈[1,e]時(shí),g`(x)=1+>0.
∴函數(shù)g(x)=x+lnx在[1,e]上是增函數(shù).∴[g(x)]max=g(e)=e+1.    (8分)
∵f'`(x)=1-=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)的最小值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=lnx-ax(a>0).
(I)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若對(duì)于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)在函數(shù)的圖像上,且過(guò)點(diǎn)的切線的斜率為kn
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)a>0時(shí),討論的單調(diào)性;
(Ⅲ)若對(duì)任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),函數(shù)在閉區(qū)間上的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)),
(Ⅰ)證明:當(dāng)時(shí),對(duì)于任意不相等的兩個(gè)正實(shí)數(shù)、,均有成立;
(Ⅱ)記,
(ⅰ)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(ⅱ)證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案