【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)為,,證明:.
【答案】(1)詳見解析(2)證明見解析。
【解析】
(1)利用導(dǎo)函數(shù)分子的判別式分情況討論,即可,注意參數(shù)時(shí),函數(shù)圖像開口也會(huì)發(fā)生相應(yīng)的變化。(2)利用對數(shù)平均不等式,證明即可。
解:(1),,
對于一元二次方程, ,
①當(dāng)時(shí),即時(shí),無解或一個(gè)解,
有時(shí),,此時(shí) 在上單調(diào)遞增,
②當(dāng)時(shí),即時(shí),有兩個(gè)解,
其解為, 當(dāng)時(shí),,故在 及時(shí),;且時(shí),,即在及上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時(shí),一個(gè)實(shí)根小于0,一個(gè)實(shí)根大于0,所以在時(shí),,在,,即在上單調(diào)遞增,在上單調(diào)遞減。
綜上所述:即時(shí), 在上單調(diào)遞增;
當(dāng)時(shí),即在及上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減。
(2)當(dāng)時(shí),,,又因?yàn)?/span>的兩個(gè)極值點(diǎn)為,,則,是方程的兩實(shí)數(shù)根,設(shè)。
又因?yàn)?/span>,故要證,
只需證,
只需證,
只需證,
下面證明不等式,不妨設(shè),要證,即證,即證,令,設(shè),則,所以,函數(shù)在上遞減,而,因此當(dāng) 時(shí),恒成立,即成立,即成立,
所以,得證。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn),且P到拋物線焦點(diǎn)的距離為2直線過點(diǎn),且與拋物線相交于A,B兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)若點(diǎn)Q恰為線段AB的中點(diǎn),求直線的方程;
(Ⅲ)過點(diǎn)作直線MA,MB分別交拋物線于C,D兩點(diǎn),請問C,D,Q三點(diǎn)能否共線?若能,求出直線的斜率;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)時(shí),的極大值為;當(dāng)時(shí),有極小值。求:
(1)的值;
(2)函數(shù)的極小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)試判斷函數(shù)在上的單調(diào)性,并說明理由;
(2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)滿足,記的導(dǎo)函數(shù)為,當(dāng)時(shí)恒有.若,則m的取值范圍是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com