非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:(1)對(duì)任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為“融洽集”.現(xiàn)給出下列集合和運(yùn)算:
①G={非負(fù)整數(shù)},⊕為整數(shù)的加法.
②G={偶數(shù)},⊕為整數(shù)的乘法.
③G={平面向量},⊕為平面向量的加法.
④G={二次三項(xiàng)式},⊕為多項(xiàng)式的加法.
⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法.
其中G關(guān)于運(yùn)算⊕為“融洽集”的是    .(寫(xiě)出所有“融洽集”的序號(hào))
【答案】分析:根據(jù)題意對(duì)給出的集合和運(yùn)算對(duì)兩個(gè)條件:運(yùn)算的封閉性和單位量e進(jìn)行驗(yàn)證,分別用加法、乘法和平面向量的線(xiàn)性運(yùn)算的法則判斷,只有都滿(mǎn)足時(shí)才是G關(guān)于運(yùn)算⊕為“融洽集”.
解答:解:①G={非負(fù)整數(shù)},⊕為整數(shù)的加法,滿(mǎn)足任意a,b∈G,都有a⊕b∈G,
且令e=0,有a⊕0=0⊕a=a,∴①符合要求;
②G={偶數(shù)},⊕為整數(shù)的乘法,若存在a⊕e=a×e=a,則e=1,矛盾,∴②不符合要求;
③G={平面向量},⊕為平面向量的加法,兩個(gè)向量相加結(jié)果仍為向量;取,滿(mǎn)足要求,
∴③符合要求;
④G={二次三項(xiàng)式},⊕為多項(xiàng)式的加法,兩個(gè)二次三項(xiàng)式相加得到的可能不是二次三項(xiàng)式,
∴④不符合要求;
⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法,兩個(gè)虛數(shù)相乘得到的可能是實(shí)數(shù),∴⑤不符合要求,
這樣G關(guān)于運(yùn)算⊕為“融洽集”的有①③.
故答案為:①③.
點(diǎn)評(píng):本題考查了學(xué)生對(duì)新定義的理解和運(yùn)用能力,可結(jié)合學(xué)過(guò)的運(yùn)算性質(zhì)進(jìn)行類(lèi)比理解,比如:第一條是運(yùn)算的封閉性,第二條如加法中的“0”或乘法中的“1”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:(1)對(duì)任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為“融洽集”.現(xiàn)給出下列集合和運(yùn)算:
①G={非負(fù)整數(shù)},⊕為整數(shù)的加法.
②G={偶數(shù)},⊕為整數(shù)的乘法.
③G={平面向量},⊕為平面向量的加法.
④G={二次三項(xiàng)式},⊕為多項(xiàng)式的加法.
⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法.
其中G關(guān)于運(yùn)算⊕為“融洽集”的是
 
.(寫(xiě)出所有“融洽集”的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:①對(duì)于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對(duì)一切a∈G都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為和諧集,現(xiàn)有下列命題:
①G={a+bi|a,b為偶數(shù)},⊕為復(fù)數(shù)的乘法,則G為和諧集;
②G={二次三項(xiàng)式},⊕為多項(xiàng)式的加法,則G不是 和諧集;
③若⊕為實(shí)數(shù)的加法,G⊆R且G為和諧集,則G要么為0,要么為無(wú)限集;
④若⊕為實(shí)數(shù)的乘法,G⊆R且G為和諧集,則G要么為0,要么為無(wú)限集,其中正確的有
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:(1)對(duì)任意a,b∈G,都有a⊕b∈G;(2)存在e∈G,使得對(duì)一切a∈G,都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為“融洽集”;現(xiàn)給出下列集合和運(yùn)算:①G={非負(fù)整數(shù)},⊕為整數(shù)的加法;   ②G={函數(shù)},⊕為函數(shù)的和;③G={不等式},⊕為同向不等式的加法;④G={虛數(shù)},⊕為復(fù)數(shù)的乘法.其中G關(guān)于運(yùn)算⊕為“融洽集”的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)非空集合G關(guān)于運(yùn)算⊕滿(mǎn)足:(1)對(duì)于任意a、b∈G,都有a⊕b∈G;(2)存在e∈G,使對(duì)一切a∈G都有a⊕e=e⊕a=a,則稱(chēng)G關(guān)于運(yùn)算⊕為“融洽集”,現(xiàn)在給出集合和運(yùn)算::
①G={非負(fù)整數(shù)},⊕為整數(shù)的加法;
②G={偶數(shù)},⊕為整數(shù)的乘法;
③G={平面向量},⊕為平面向量的加法;
④G={虛數(shù)},⊕為復(fù)數(shù)乘法,其中G為關(guān)于運(yùn)算⊕的“融洽集”的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

非空集合G關(guān)于運(yùn)算滿(mǎn)足:①對(duì)于任意a、b∈G,都有a?b∈G;②存在e∈G,使對(duì)一切a∈G都有a?e=e?a=a,則稱(chēng)G關(guān)于運(yùn)算為融洽集,現(xiàn)有下列集合運(yùn)算:
(1)G={非負(fù)整數(shù)},為整數(shù)的加法;
(2)G={偶數(shù)},為整數(shù)的乘法;
(3)G={平面向量},為平面向量的加法;
(4)G={二次三項(xiàng)式},為多項(xiàng)式的加法;
其中關(guān)于運(yùn)算的融洽集有
(1)(3)
(1)(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案