設(shè)雙曲線的頂點(diǎn)是橢圓的焦點(diǎn),該雙曲線又與直線交于兩點(diǎn)A、B且OA⊥OB(O為原點(diǎn)).
(1)求此雙曲線的標(biāo)準(zhǔn)方程; 
(2)求|AB|的長度.
【答案】分析:(1)利用條件雙曲線的頂點(diǎn)是橢圓的焦點(diǎn),可以假雙曲線的方程為,再結(jié)合條件OA⊥OB,可求雙曲線的標(biāo)準(zhǔn)方程;(2)求|AB|的長度,利用兩點(diǎn)間的距離公式求解.
解答:解:(1)橢圓的焦點(diǎn)為(0,±1),依題意設(shè)雙曲線的方程為,設(shè)A(x1,y1),B(x2,y2),則,,∴15x1x2=9y1y2-18(y1+y2)+36,

由 OA⊥OB,∴x1x2+y1y2=0,∴4y1y2-3(y1+y2)+6=0…①
,∴(15b2-9)y2+36y-(15b2+36)=0…②
,代入①中得b2=3∴雙曲線的方程為
(2)將b2=3代入②式中,得4y2+4y-9=0,
=
點(diǎn)評:本題(1)問利用直線與曲線聯(lián)立方程組,采用設(shè)而不求的方法,關(guān)鍵是設(shè)點(diǎn);(2)問則在(1)問得基礎(chǔ)上借助于兩點(diǎn)間的距離公式求解.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長為4(
2
+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線的頂點(diǎn)是橢圓
x2
3
+
y2
4
=1
的焦點(diǎn),該雙曲線又與直線
15
x-3y+6=0
交于兩點(diǎn)A、B且OA⊥OB(O為原點(diǎn)).
(1)求此雙曲線的標(biāo)準(zhǔn)方程; 
(2)求|AB|的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)與一等軸雙曲線相交,M是其中一個交點(diǎn),并且雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn)F1,F(xiàn)2,雙曲線的焦點(diǎn)是橢圓的頂點(diǎn)A1,A2,△MF1F2的周長為4(
2
+1).設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線的頂點(diǎn)是橢圓
x2
3
+
y2
4
=1
的焦點(diǎn),該雙曲線又與直線
15
x-3y+6=0
交于兩點(diǎn)A、B且OA⊥OB(O為原點(diǎn)).
(1)求此雙曲線的標(biāo)準(zhǔn)方程; 
(2)求|AB|的長度.

查看答案和解析>>

同步練習(xí)冊答案